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Abstract

When creating photorealistic digital scenes, textures are commonly used to depict complex
variation in surface appearance. For materials that have spatial variation in three dimen-
sions, such as wood or marble, solid textures offer a natural representation. Unlike 2D
textures, which can be easily captured with a photograph, it can be difficult to obtain a
3D material volume. This thesis addresses the challenge of extrapolating tileable 3D solid
textures from images of aggregate materials, such as concrete, asphalt, terrazzo or granite.

The approach introduced here is inspired by and builds on prior work instereology—
the study of 3D properties of a material based on 2D observations. Unlike ad hoc methods
for texture synthesis, this approach has rigorous mathematical foundations that allow for
reliable, accurate material synthesis with well-defined assumptions. The algorithm is also
driven by psychophysical constraints to insure that slices through the synthesized volume
have a perceptually similar appearance to the input image.

The texture synthesis algorithm uses a variety of techniques to independently solve
for the shape, distribution, and color of the embedded particles, as well as the residual
noise. To approximate particle shape, I consider four methods—including two algorithms
of my own contribution. I compare these methods under a variety of input conditions using
automated, perceptually-motivated metrics as well as a carefully controlled psychophysical
experiment. In addition to assessing the relative performance of the four algorithms, I also
evaluate the reliability of the automated metrics in predicting the results of the user study.

To solve for the particle distribution, I apply traditional stereological methods. I first
illustrate this approach for aggregate materials of spherical particles and then extend the
technique to apply to particles of arbitrary shapes.

The particle shape and distribution are used in conjunction to create an explicit 3D ma-
terial volume using simulated annealing. Particle colors are assigned using a stochastic
method, and high-frequency noise is replicated with the assistance of existing algorithms.
The data representation is suitable for high-fidelity rendering and physical simulation. I
demonstrate the effectiveness of the approach with side-by-side comparisons of real mate-
rials and their synthetic counterparts derived from the application of these techniques.

Thesis Supervisor: Julie Dorsey
Title: Professor of Computer Science, Yale University
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Chapter 1

Introduction

Within the field of computer graphics, one of the most common objectives is to replicate

the appearance of real-world objects in a simulated digital environment. Video games at-

tempt to simulate reality to create immersive, compelling environments. Architects need to

accurately depict the appearance of real materials in order to create convincing, physically-

correct renderings of what a building will look like, even before the first brick is laid.

And as digital models become increasingly common in Hollywood entertainment, movie

and television producers are concerned with replicating natural appearances so that digital

objects can be seamlessly composited with live footage. In all of these areas, there is a

pressing need for accurate depiction of real-world materials.

1.1 Reality in a Box

When using a computer to generate photorealistic scenes, part of the challenge is represent-

ing a continuous, infinitely detailed world within the confines of a digital, finite medium.

Artists and researchers rely on simplifying assumptions and heuristics to reduce reality into

a manageable form.

At the most coarse level, real-world objects can be defined in terms of their shape and

color. But even these attributes are not as simple as they might first seem. An accurate rep-

resentation of physical shape includes not only the coarse geometry, but also the fine-scale

features that contribute to the overall appearance. Likewise, an accurate physical repre-
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sentation of color requires knowledge about how much light is reflected in each outgoing

direction on the surface as a result of incident light from each incoming direction. A num-

ber of data representations have been developed to make the complexity of the real world

manageable for purposes of realistic image depiction.

1.2 Geometric Representation

Inside a computer, the 3D geometry of a digital scene can be described in a variety of

ways. The most common representation is the polygon mesh, which consist of a collection

of vertices and connected polygonal faces. For real-time computer rendering, polygon

meshes are used almost exclusively, as specialized hardware can process this type of data

extremely quickly. Other common data structures include subdivision surfaces and non-

uniform rational B-splines (NURBS), each of which is defined by a collection of control

points and parameters to govern surface smoothness. There are a variety of other 3D surface

representations, both implicit and explicit.

Each representation has its own advantages. Triangle meshes are simple and fast to

render, making them appropriate for video games or other real-time visualization. Sub-

division surfaces and NURBS offer smooth variation along surface geometry for natural,

high-fidelity appearances. These latter representations are used more frequently in archi-

tectural renderings or movies, where images can be generated over a longer period of time,

and physical correctness is more important than rapid synthesis.

Of course, the appearance of real-world objects is affected by more than just their shape.

Color and other material properties must also be accurately represented in order to render a

synthetic scene with a convincing look. This type of additional information could be asso-

ciated with each vertex, polygon, or control point of a geometric model, but this approach

has severe limitations when attempting to represent detailed appearances.

14



1.3 The Role of Texture

Most real-world objects exhibit complex spatial variation in their surface color and finish.

In theory, this type of appearance might be achieved in a digital scene by creating fine-

scale geometry that represents every tiny bump and material feature. However, in practice,

creating geometry with this level of detail is prohibitive from a standpoint of authorship,

digital storage, and computer rendering.

Instead, for simulating complex appearances, the computer graphics community relies

heavily on the use oftexture—color and material data that can be mapped to the surface

of a geometric model [Catmull 1974; Blinn and Newell 1976]. In its simplest form, a

texture can be a photograph of a real-world material. When projected onto a geometric

surface, textures can convey the appearance of material variation, as well as an illusion of

small-scale geometric features.

Textures can contain more than just color information. Small aberrations in surface

geometry can be parameterized in 2D with a variety of representations that include bump

maps [Blinn and Newell 1976], displacement maps [Cook 1984], or bidirectional texture

functions [Dana et al. 1999]. Furthermore, textures can encode other variations in material

parameters such as specularity, opacity, or surface normal.

There are a number of challenges associated with authoring textures and mapping them

to a 3D surface. To achieve a desired appearance, an artist may either paint a texture by

hand or take a photograph of a physical structure, if such an object exists. This swatch of

texture can then be tiled over the surface of a digital model. However, the human eye is

very perceptive of the repetitive artifacts that can be caused by texture tiling; the result may

be visually distracting and can detract from the overall appearance.

Of course, most objects in digital scenes are not purely planar. Mapping an inherently

2D texture to the surface of a 3D model can be a challenging task. The texture parameter-

ization may result in distortion and visible seams. Even for a simple object like a sphere,

there is no distortion-free mapping from a 2D texture onto the 3D surface, and singular

points and seams are unavoidable. Furthermore, at sharp corners like those on a cube, it is

often impossible to maintain a consistent appearance across geometric edges. Examples of

15



Figure 1-1: Problems of texture continuity are often apparent at geometric seams when
using 2D textures. These boxes appear as though they are wallpapered as opposed to being
cut out of solid materials.

texture inconsistencies at geometric boundaries can be seen in Figure 1-1.

The problem of texture continuity is often especially apparent foranisotropictextures,

which exhibit varying appearance characteristics in different directions. For instance, on

the surface of a wooden table, the grain of the wood has a clear orientation. As demon-

strated by the wooden cube in Figure 1-1, more than one 2D texture would be needed to

accurately portray this appearance consistently on all six faces.

In many cases, the problem of texture consistency stems from the fact that the appear-

ance of a real object may result from being cut out of a 3D spatially varying material. 2D

textures may be appropriate for conveying the appearance of fundamentally 2D features

such as paint, skin, fur, or mechanically roughened surfaces. However, two-dimensional

representations are often inappropriate for inherently volumetric materials such as wood,

concrete, or granite. Gardner [1984], Peachey [1985], and Perlin [1985] introduced the

idea of 3Dsolid texturesas a representation for such spatially varying materials.

Just as a surface texture can be expressed as a 2D array oftexels, a solid texture can

be represented as a 3D array ofvoxels—discrete volumetric elements that contain color or

material parameters. Solid texture can be mapped to the surface of a geometric model by

evaluating where each point on the surface of the model falls within the voxel array.

Solid textures effectively address the problems of surface parameterization and con-

sistency, but introduce new challenges as well. Simply obtaining a solid texture can be
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a difficult task. While 2D textures can be captured with a simple photograph, it is typi-

cally impractical to scan a 3D object by cutting numerous thin slices through the material.

For hard materials such as concrete or granite, this type of destructive process may be in-

feasible. A few nondestructive scanning techniques exist, including magnetic resonance

imaging, tomography, and confocal microscopy; however, these techniques require costly

measuring instruments, and are only practical within certain domains of materials.

Even if a solid texture can be obtained from a physical object, the result is limited in

space and resolution. In order to texture a geometric model that is larger than the texture

volume, the 3D texture may be tiled in space, which can result in unacceptable visible

artifacts along texture seams.

One alternative to the voxel representation isprocedural textures—3D functions that

can be evaluated at any point in space to return material parameters. For many years,

procedural techniques have proved useful for the artistic generation of 3D solid textures.

However, engineering a realistic procedural texture can be a challenging task that involves

deriving a mathematical expression to quantify appearance characteristics. Furthermore,

3D procedural shaders are often highly parameterized with nonintuitive inputs that can

make it difficult, even for a talented artist, to match the appearance of a physical sample.

Ideally, it is preferable to extrapolate such parameters automatically from a 2D image with

a desired appearance.

1.4 Texture Synthesis

The problems associated with finite textures are addressed by research in the area oftexture

synthesis—techniques that aim to replicate the qualitative appearance of an input image

without the repetition that results from simple tiling [Ebert et al. 1994]. Much of this

research relies on assumptions about how humans perceive textures. A number of texture

synthesis algorithms have been proposed, each of which tends to work well within a specific

domain of appearances.

In addition to addressing the problem of tiling artifacts, research in texture synthesis

offers solutions to the problems of continuity and distortion caused by surface parameter-
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ization. A number of authors have proposed algorithms for synthesizing textures directly

on 3D objects based on representative 2D images [Wei and Levoy 2001; Turk 2001; Gorla

et al. 2001; Zhang et al. 2003]. These synthesis algorithms operate within a local tex-

ture domain, which allows the techniques to guarantee continuity across geometric edges

while minimizing spatial distortion. By using physically occurring input textures, these

algorithms can often produce rich, natural appearances.

The vast majority of texture synthesis research has focused on synthesizing 2D textures

from 2D image inputs. Only a few viable solutions have been proposed for the synthesis of

3D textures from 2D images [Heeger and Bergen 1995; Dischler et al. 1998; Lefebvre and

Poulin 2000; Dischler and Ghazanfarpour 2001; Wei 2001; Wei 2003]. This prior work

will be discussed in greater detail in Chapter 2.

1.5 3D Textures of Aggregate Materials

In this thesis, I address the challenge of synthesizing 3D solid textures from 2D input

images for the class of textures composed of discrete particles distributed in a binding

medium. This class includes man-made building materials such as concrete aggregates,

asphalt, and terrazzo, naturally occurring materials such as igneous rock, and materials that

exhibit discrete volumetric voids, such as sponges and foams. Some examples of these

types of materials are shown in Figure 1-2.

The algorithms described in the following chapters extrapolate information about the

3D volume based on observedprofiles—2D curves that denote the boundaries between

discrete particles and the binding material that surrounds them. I introduce a number of

algorithms that analyze this input to recover material parameters that quantify the texture

appearance.

To address these challenges, I build on techniques from the disciplines of computer vi-

sion and computer graphics, as well as established methods instereology—a spatial version

of sampling theory developed in the fields of biology and material science [Hagwood 1990;

Underwood 1970]. Specifically, much of the work in stereology describes the relationship

between the 3D parameters of a material and the 2D features that can be seen in a single
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Figure 1-2: Each of the materials shown here can be represented as particle aggregates.
Clockwise from upper-left are concrete, terrazzo, sponge, and asphalt. For the sponge, the
material voids can be given the same treatment as the particles in the other examples.
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(a) (b)

(c) (d) (e)

Figure 1-3: An image of an aggregate material (a) can be approximated using the tech-
niques described in this thesis (b). Shown for comparison are the results produced by
Heeger and Bergen’s algorithm [1995] (c), Efros and Leung’s method [1999] (d), and Efros
and Freeman’s Image Quilting [2001] (e).

slice through that material. In biology, these relationships allow an observer to extrapolate

properties of an organic tissue sample based only on 2D observations of the cells. In ma-

terial science, these relationships are important for predicting the structural characteristics

of a physical object.

The texture synthesis approach introduced here independently recovers material param-

eters for the particle shape, particle distribution, color and noise. Once all the parameters

of a material have been obtained, I demonstrate how to construct a synthetic texture volume

with a comparable appearance to the input example. A sample comparison of original and

synthetic textures is shown in Figure 1-3. The input image (a) is analyzed to recover the

texture parameters. A single slice through this synthetic volume (b) is perceptually similar

to the input. The solid texture can be tiled seamlessly in three dimensions and is suitable
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for high-fidelity rendering.

1.6 Stochastic vs. Structured

Generally speaking, textures can be classified according to their appearance on a scale from

stochastic to structured. On one extremum are entirely random textures, such as white

noise. On the other end are highly structured textures, such as a checkerboard. Aggregate

materials form a particularly interesting class of textures because their appearance contains

elements at both ends of this classification spectrum. The textures are structured in the

sense that profile appear as finite, disjoint regions with sharp boundaries, characteristic

shapes, and precise distributions. However, particle shapes and distributions also exhibit

stochastic attributes, and the overall texture appearance is affected by random noise and

color variation.

This mix of stochastic and structured attributes makes aggregate materials particularly

challenging from a standpoint of both analysis and synthesis. A number of existing algo-

rithms in texture synthesis assume stochastic inputs. When these methods are applied to

images of aggregate materials, they tend to blur particle boundaries and eliminate structure.

An example of this can be seen in the synthetic image in Figure 1-3(c), which was produced

using Heeger and Bergen’s algorithm [1995].

Other research has considered the use of nonparametric models that aim to enforce local

texture coherence. These methods are able to capture more of the local texture structure, but

they often fail to effectively capture the individual particle shapes and overall distribution.

Figure 1-3(d) was generated by Efros and Leung’s texture synthesis algorithm [1999] on an

input texture of size 128×128—half the resolution of the image shown in Figure 1-3(a).

Texels were selected from the five best matches obtained with a window size of 13 pixels.

Results from Efros and Freeman’s Image Quilting algorithm [2001] are shown in Fig-

ure 1-3(e). These results were obtained with an input image of size 256×256 using a patch

size of 30×30 and an overlap region of five texels. Patches in the synthesized texture were

randomly selected from the best three matches.

The results produced by Efros and Leung’s algorithm and by Efros and Freeman’s Im-
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age Quilting are two-dimensional and have a significant dependence on the selected input

parameters. These and other existing algorithms are discussed in greater detail in Chapter 2.

In order to synthesize textures that are perceptually similar to the input, both the stochas-

tic and structured attributes must be replicated. In this thesis, by independently considering

the parameters of a texture—particle shape, particle distribution, color, and noise—I am

able to evaluate each distinct characteristic in the most appropriate domain.

1.6.1 Structured Attributes—Shape and Distribution

Particle shape and distribution are considered from a structural perspective. Each image

is first segmented into discrete profiles, reducing the texture to collection of well-defined

shapes. 3D Particle shapes are estimated by extrapolating information from the 2D pro-

files. I consider four different methods for particle synthesis, three of which incorporate

characteristic profile shapes directly into synthetic 3D particles.

In order to evaluate the performance of these algorithms, the resulting 3D particles

are, in turn, evaluated relative to the profile shapes that they exhibit. Profiles from the

original texture are directly compared to profile slices through the synthetic 3D particle via

automated metrics and psychophysical evaluation. This approach is described in greater

detail in Chapter 3.

To approximate the particle distribution, simple counting measures are computed on the

segmented image profiles. The 3D distribution is then derived by applying stereological

techniques, as described in Chapter 4.

1.6.2 Stochastic Attributes—Color and Noise

In contrast to the structured attributes of shape and distribution, color and noise parameters

are considered from a stochastic perspective. For most input textures, it is safe to assume

that there is no spatial relationship between the colors of distinct particles. As such, colors

from segmented 2D profiles can be randomly assigned to 3D particles.

In addition to the particle colors, I assume the presence of a residual noise function

that contributes high-frequency information to a texture. This noise can be captured with
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the assistance of existing techniques that assume stochastic inputs. Color and noise are

discussed in detail in Chapter 6.

1.7 Contributions

This thesis addresses unsolved problems in the areas of texture synthesis, stereology, and

shape perception. The primary contributions are as follows:

• A comprehensive algorithm for synthesizing 3D textures of aggregate particles from

physical 2D samples. Slices through the resulting 3D textures are perceptually simi-

lar to the input.

• Introduction of two novel methods for extrapolating 3D particle shapes from 2D

profiles.

• Analysis of four 3D shape approximation methods compared via automated metrics

and a carefully implemented user study.

• Assessment of two automated metrics as predictors for the psychophysical evaluation

of 2D shape similarity.

• A computational method for recovering the size distribution of one or more arbitrarily

shaped particles.

• Methods for reconstructing a synthetic volume based on recovered parameters for

particle shape, particle distribution, color, and noise.

• Validation of the solid texture synthesis algorithm via direct comparison of a physical

model and its synthetic counterpart.

Although this thesis considers a restricted class of solid textures, by drawing on stereol-

ogy and the understanding of human perception as developed in other fields, this research

adds to the existing array of tools for extracting 3D information for computer graphics

applications. Furthermore, since stereology and the study of human perception have been
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developed as a tools for quantitative analysis, they have well-defined assumptions and a rig-

orous mathematical basis. This allows for the generation of reliable, precise solid textures

for computer graphics applications.

In contrast to the voxel-based data structure described previously, the data representa-

tion that I have chosen to use maintains exact particle shapes, yet is more compact than

a discretely sampled volume. Furthermore, by maintaining a notion of explicit, precise

particle shapes, the volumetric data is appropriate for physical simulation and direct 3D

visualization.

1.8 Overview

In the remainder of this thesis, I begin by describing some of the prior research that serves

as the foundation for this work, as described in Chapter 2.

Chapter 3 describes four different techniques for extrapolating 3D particle shapes from

2D profiles, including two novel methods that are introduced here. These four methods

are then compared using automated metrics, as well as a complete user study. In addition

to assessing the relative performance of the proposed algorithms, Chapter 3 evaluates the

utility of the automated metrics as reliable predictors of algorithm performance from a

perceptual standpoint.

Stereological techniques for recovering particle distribution are described in Chapter 4.

This is followed in Chapter 5 by a discussion about sources of error and interdependence

between particle shape and distribution.

Methods for approximating particle color and high frequency noise are described in

Chapter 6. This chapter also describes how the recovered material parameters are used

together to populate and anneal a synthetic texture volume. I provide a detailed description

of the data representation, including considerations for rendering high-fidelity images.

In Chapter 7, I demonstrate the results of the algorithm as applied to a number of input

texture examples. Finally, in Chapter 8, I provide conclusions and discuss potential avenues

for future research.
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Chapter 2

Previous Work

The work presented in this thesis draws on prior contributions in the areas of computer

vision, human perception, computer graphics, and stereology. The most relevant research

is described below.

2.1 Texture Authoring and Dimensionality

Digital textures were first used for computer-generated images in the mid-1970s [Catmull

1974; Blinn and Newell 1976]. Since then, textures have been widely recognized for their

value in creating compelling synthetic images by conveying complex material appearances

without substantially altering the underlying geometry.

2.1.1 2D Texture

Textures are routinely categorized according to the dimension of the data used. In their

simplest form, two-dimensional textures map color data from an image to a surface. In this

case, the textures are typically stored as 2D arrays oftexels—color samples that may be

augmented by additional material parameters such as specularity, transparency, or surface

normal. Textures may be obtained by using procedural techniques, physical simulation,

artistic authoring, or direct acquisition from real-world objects.

The simplest way to obtain a 2D texture is to photograph an object that depicts a de-

25



sired appearance. As with any finite representation, if a photograph is to be applied to a

geometric surface that is larger than the texture region, then tiling artifacts may result.

To give the illusion of small-scale geometric bumps or wrinkles,bump mapscan be used

to depict small displacements in the surface geometry [Blinn 1978]. A 2D array containing

small offsets from the underlying surface can be filtered to obtain anormal map, which

indicate how the surface normal is perturbed when performing shading computations. This

representation can give a compelling illusion of surface detail, but does not actually alter the

underlying geometry. Bump maps can be procedurally generated [Blinn 1978] or estimated

from existing surfaces [Rushmeier et al. 1997].

Procedural methods for authoring 2D textures include the use of reaction-diffusion,

which is effective for creating striped and spotted appearances on surfaces [Witkin and Kass

1991; Turk 1991]. Other authors have used physical simulation to replicate real-world phe-

nomena such as metallic patinas [Dorsey and Hanrahan 1996], weathering patterns created

by the flow of water [Dorsey et al. 1996], corrosion [Merillou et al. 2001], and biological

growth [Sumner 2001].

At the far end of the 2D texture representation areBidirectional Texture Functions

(BTFs), which use a collection of input images to simulate remarkably complex appearance

characteristics without altering the underlying geometry [Dana et al. 1999; Vasilescu and

Terzopoulos 2004]. Unlike bump maps, BTFs can convey the appearance of self-occlusion,

self-shadowing, and interreflection.

2.1.2 2.5D Texture

In contrast to 2D bump maps or BTFs,displacement mapsmodify the actual geometry of an

object in a region near its surface [Cook 1984]. Displacement maps fall into the category of

textures that are often referred to as being 2.5-dimensional, as they create 3D geometry, but

their influence is typically limited to a constrained region near the surface of an underlying

model.

For simulating certain types of real-world appearances, 2.5D textures offer an effective,

concise representation. For instance, Dorsey et al. noted that a variety of weathering effects
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take place only in a thin region near the surface of real-world objects [Dorsey et al. 1999].

Their research represented models as surface-aligned volumetricslabs—an effective foun-

dation for physical simulation of weathering phenomena. Some simulations for cracking

and peeling produce what might be considered 2.5D textures [Hirota et al. 1998; Paquette

et al. 2002], as do the cellular texture methods of Fleischer et al. [1995].

Geometry imagesfall at the extreme end of 2.5D textures [Gu et al. 2002; no et al.

2003]. With this representation, a single 2D array of texels can be used to depict a complete

3D model. Points in the array are transformed into 3D space based on their color, and model

connectivity is implicit in the adjacency relationships of the texels.

2.1.3 3D Texture

For representing materials that exhibit spatial variation and internal structure, 3D textures

offer a natural solution. Common materials that fall into this category include wood, con-

crete, asphalt, granite, and marble. In applications where 3D modifications are made to

rigid objects, solid textures are vital for maintaining a consistent, realistic appearance [Cut-

ler et al. 2002].

Similar to solid textures, a number of authors have also usedvolumetric texturesto pro-

cedurally represent finely scaled geometric features enclosed within a volumetric region.

This representation is useful for rendering detailed appearances such as hair [Kajiya and

Kay 1989], clouds [Schpok et al. 2003], foliage [Neyret 1996], or other complex, repetitive

geometry [Neyret 1995].

The overwhelming majority of solid textures that are used in computer graphics are pro-

cedurally generated [Gardner 1984; Peachey 1985; Perlin 1985; Perlin and Hoffert 1989;

Ebert et al. 1994]. For simulating materials with discrete particle shapes, Worley introduced

a cellular texture basis function [1996]. Unfortunately, none of these representations are

well-suited for automated extrapolation of appearance parameters from example images.

Furthermore, existing procedural shaders often do not have a sufficiently large parameter

space to accurately portray the appearance of specific aggregate materials.

The dearth of physical 3D textures stems largely from the fact that real-world 3D
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datasets tend be be exceedingly difficult to obtain. Non-destructive methods such as to-

mography or magnetic resonance imaging can measure internal material structures, but

these processes require costly equipment, and the acquired data are often not appropriate

for representing appearance parameters.

2.1.4 Surface Parameterization

One drawback of 2D and 2.5D textures is that an explicit parameterization must be defined

to map points from 2D texture space onto the 3D geometry in digital scenes with nonplanar

surfaces. For some applications, straightforward parameterizations such as orthographic

or perspective projection can be used to define this relationship [Heckbert 1986]; however,

these simple techniques yields stretching artifacts on surfaces that are nearly tangent to the

direction of projection.

A number of automated parameterization methods have been proposed [Bier and Sloan

1986; Ma and Lin 1988; Bennis et al. 1991; Maillot et al. 1993; Lee et al. 1998; Lévy

2001; Ĺevy et al. 2002], each based on metrics for minimizing texture distortion, which

can be defined according to a variety of different criteria. Metrics have been introduced to

minimize change in distance [Zigelman et al. 2002], preserve right angles [Lévy and Mallet

1998; Haker et al. 2000], reduce the visibility of texture seams [Tarini et al. 2004], or adapt

to texture details [Carr and Hart 2004]. Parameterizations derived from these methods are

model-specific, and must be recomputed for each new geometric shape.

In contrast to 2D and 2.5D textures, no explicit parameterization is necessary for 3D

textures. Assuming that the texture volume fills the entire space surrounding a geometric

model, surface points can be colored by indexing directly into the 3D array or procedural

shader.

2.2 Texture Synthesis

To address the challenge of authoring large quantities of textures from small input ex-

amples, a number of researchers have recently turned their attention to texture synthesis.
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Existing methods in texture synthesis can be classified according to the dimensionality of

the input data and the dimensionality of the synthesized texture result.

2.2.1 2D to 2D

Most algorithms in texture synthesis start with a 2D source texture and yield a 2D target.

This category of methods can be further classified according to the assumptions made re-

garding how humans perceive texture, and how this knowledge can be used to effectively

replicate a desired appearance.

Frequency Analysis

One category of research is founded on the assumption that texture frequency at various

scales has a strong influence on human perception of appearance. Heeger and Bergen

rely on this assumption to perform pyramid-based texture analysis and synthesis, which

coerces an initial noise distribution such that the energy histogram of each frequency band

matches the histogram of the corresponding frequency band in a source image [1995]. This

approach tends to be effective for replicating stochastic textures, but does not perform well

on structured images.

When operating on color images, Heeger and Bergen assume a strong interdependence

between the red, green, and blue color channels. Their technique first decorrelates the color

bands in a manner that captures the majority of the color variation in a single dimension.

The algorithm then operates on each decorrelated channel independently and finally recom-

bines the results. For images in which the color variation cannot be effectively captured in

a single dimension, this method tends to yield color artifacts.

Portilla and Simoncelli allow for synthesis of more structured textures by utilizing a

model that captures and reproduces the joint statistics of wavelet coefficients [1998; 2000];

however, the approach is only described for greyscale images, and is still poorly suited for

use with highly structured textures. In particular, for textures that exhibit discrete particles,

the individual particle shapes tend to be merged together or broken irregularly.
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Statistical Sampling

In the texture synthesis work of De Bonet, novel textures are created in a two-stage pro-

cess [1997]. In the analysis phase, the algorithm computes the joint occurrence of visual

features across multiple frequencies in the source image. In the synthesis phase, a tar-

get image is created by successively adding details in bands of increasing frequency in a

manner that respects the joint occurrence of features observed during the analysis process.

This approach works remarkably well for reproducing the appearance of stochastic tex-

tures, but fails to effectively replicate structured textures.

Local, Nonparametric Methods

Other research in 2D texture synthesis is based on the assumption that texture appearance

depends primarily on local coherence in a small neighborhood surrounding each texel. This

assumption has led to the development of methods that synthesize textures sequentially, one

small region at a time, often in a manner that copies data directly from a source image to a

target image [Popat and Picard 1993].

In particular, a number of authors have adopted the use ofMarkov Random Fields

(MRFs)—graph-based representations that can be used to model probabilistic dependencies

between graph nodes [Zhu et al. 1998; Paget and Longstaff 1997; Efros and Leung 1999].

Dependencies are limited to the local neighborhood of a graph node, making the approach

well-suited for perceptual models that emphasize the role of local texture coherence.

Efros and Leung utilized an MRF framework to synthesize one texel at a time by search-

ing for texels in the source image that have a similar neighborhood to those already syn-

thesized in the target image [1999]. An example result produced by their method can be

seen in Figure 1-3(d). Due to the size of the search space, this approach tends to be very

slow. Wei and Levoy accelerated this method using tree-structured vector quantization and

multiresolution synthesis [2000]. Their use of a hierarchical approach improved the per-

formance of the algorithm, but the method still yields artifacts when applied to structured

source images.

Efros and Freeman introduced the use of image quilting to address the problems of
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speed and coherence in local, nonparametric texture synthesis models [2001]. Their algo-

rithm stitches together small patches of texture from a source image. As can be seen in

Figure 1-3(e), this tends to result in particle shapes and distributions that do not effectively

reflect those see in an input image. This approach was later refined to use irregular image

patches, which can be stitched together with graph cuts [Kwatra et al. 2003].

Other noteworthy contributions in this area come from Ashikhmin, who includes a

mechanism for limited user control of the texture synthesis process [2001], and Hertzmann

et al., who introduced a general image analogies framework for transferring appearance

characteristics between images [2001].

Because they operate in a local texture neighborhood, these nonparametric methods

tend to be well-suited for synthesis directly on the surface of 3D geometry [Wei and Levoy

2001; Turk 2001; Gorla et al. 2001; Zhang et al. 2003]. However, it should be remembered

that such parameterizations are model-specific and must be recomputed for each geomet-

ric model where surface texture is desired. In contrast, solid textures can be conveniently

mapped to the surface of any 3D model without having to perform an explicit parameteri-

zation.

2.2.2 3D to 3D

A handful of the algorithms discussed in the previous section can also be adapted for syn-

thesizing 3D textures if a fully 3D solid texture sample is available [Wei and Levoy 2001;

Efros and Leung 1999; Kwatra et al. 2003]. However, this class of algorithms tends to

be of limited use, as it can be difficult to obtain an fully three-dimensional input sample.

Furthermore, increasing the dimensionality of the input tends to amplify the problems that

local nonparametric methods have with speed and coherence.

Falling into a category by itself is work by Bhat et al. [2004] that uses the image analo-

gies framework introduced by Hertzmann et al. [2001] to synthesize 3D geometry based on

example surface deformations. This geometric texture synthesis process can be best char-

acterized as yielding a 2.5D result, as the geometric deformations are limited to a region

near the surface of the original model.
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2.2.3 2D to 3D

In this thesis, I am interested primarily in the class of texture synthesis algorithms that take

a 2D physical sample as input and extrapolate a 3D volume with a comparable appear-

ance. This is an enormously useful class of algorithms, as 2D input samples can be easily

obtained, and the resulting 3D textures offer advantages with parameterization and visual

consistency. However, only a few such methods exist.

Heeger and Bergen’s pyramid-based texture analysis and synthesis, which was de-

scribed above for 2D textures synthesis, can also be used to synthesize a solid texture

from a 2D input [1995]. The process can be divided into an analysis stage and a synthesis

stage. During analysis, a 2D Laplacian pyramid is derived from an input texture such that

each level of the pyramid corresponds to a particular frequency band in the image. In the

synthesis phase, a 3D Laplacian pyramid is used. The energy histogram at each subband

in the 3D pyramid is coerced to match the histogram at the corresponding level of the 2D

pyramid. The 3D pyramid is then collapsed to yield a solid texture with a comparable

appearance to the input.

In the same spirit, Dischler et al. [1998; 2001] use a spectral analysis of orthogonal

images of a physical 3D volume and iteratively alter a 3D noise distribution to match the

statistics of the original images. This allows their method to capture aspects of anisotropic

solids such as wood and marble. These algorithms work well for a subclass of common

natural textures, but are unable to reliably reproduce the appearance of materials composed

of discrete particles.

Lefebvre and Poulin [2000] successfully generate 3D wood textures from 2D images

by analyzing an input image to obtain parameters for a procedural shader. This specific

algorithm does not generalize for other classes of solid textures. However, the concept of

automatically recovering parameters for a procedural model shares some similarities with

the methods used in this thesis.

Markov Random Fields have been used with limited success in generating 3D solid

textures from 2D images. A method introduced by Wei [2001; 2003] attempts to generate

texels one at a time by simultaneously matching texel neighborhoods from three orthog-
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onally oriented input textures. This approach is successful for some textures classes, but

tends to amplify texture artifacts that are seen when the methods are used in 2D. Because

the method computes only one voxel at a time, it may be unreasonably slow for calculating

a large synthetic volume. When applied to images of aggregate materials, the resulting 3D

textures fail to accurately characterize the size or distributions of macroscopic particles,

and may also poorly represent the overall color histogram.

2.3 Recovering Particle Distributions

When dealing with discrete macroscopic particles, part of the challenge in synthesizing a

3D texture is accurately recovering the distribution of particles based only on a 2D input.

This problem is also of interest in the material and biological sciences, where a precise

quantitative characterization of heterogeneous materials is needed to study structures that

are built or grown from these materials [Underwood 1970; Howard and Reed 1998; Hag-

wood 1990].

Since obtaining full three-dimensional samples of solids is an expensive and time-

consuming process, the discipline of stereology was developed to infer 3D shape and dis-

tribution from 2D samples. The distribution recovery technique that is used in this thesis is

most closely related to that of Saltikov [1967], who uses histogram binning to establish a

correlation between the distributions of 2D profiles and 3D particles of various sizes. This

approach will be discussed in greater detail in Chapter 4.

Comparable techniques have been described by a number of other authors [Wicksell

1925; Keiding and Jensen 1972; Schopper 1975; Taylor 1983]. DeHoff attempts to fit a

simple two-parameter curve to the particle sizes by assuming that they exhibit a lognormal

distribution, which is commonly the case for physical materials [1965]. However, this

approach overly constrains the space of possible solutions.

With the advent of digital imagery, image analysis and stereology are frequently used

in conjunction for a variety of applications [Wojnar 2002]. Stereological techniques were

first used for texture synthesis by Jagnow et al. [2004], who used the methods for estimat-

ing particle distributions when assuming that the individual particle shapes are knowna
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priori . This thesis relaxes these early assumptions regarding the particle shapes and further

demonstrates the application of some of the fundamental techniques of stereology for solid

texture synthesis.

2.4 Particle Shape Estimation

Before we can recover particle distributions, we need a suitable method for extrapolating

individual 3D particle shapes based only on observed 2D profiles. This problem has been

previously addressed within computer graphics, computer vision, and stereology. A num-

ber of specialized solutions have been presented, each targeted to particular assumptions

and data constraints.

2.4.1 Surface Inflation

When only a single profile is available, Igarashi et al. constrain the reconstruction problem

by assuming that the 3D shape exhibits a circular profile along its chordal axis [1999].

This approach yields smoothly curved polygonal models. Other authors have adapted this

method to operate on implicit surfaces[Karpenko et al. 2002; De Araujo and Jorge 2003].

However, particle inflation is suitable only for producing smooth, rounded shapes, and is

poorly suited for synthesizing particles with sharp corners.

2.4.2 Spherical Harmonics

Methods for extrapolating individual cell shapes from 2D biopsies have been studied by a

number of authors within the stereological community. Inhistology—the study of micro-

scopic structures of plants or animals—the analysis of particle distribution, shape, and vari-

ability has been used for detecting the presence of cancerous or precancerous cells [Gardner

et al. 2004] and other diseases [Keiding and Jensen 1972].

For estimating 3D shapes, the spherical deformation model is one of the most com-

monly used methods within the stereological community. Using spherical harmonics as

basis functions, Hobolth and Jensen demonstrate how to establish a relationship between
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the observed frequencies in a 2D profile and those of a 3D particle [2002; 2003]. A number

of other authors have also adopted the use of spherical harmonic basis functions for 3D

shape approximation, as the representation is compact and mathematically rigorous [Ed-

vardson and Smedby 2002; Weistrand 2001].

While spherical harmonics offer an appropriate shape representation within certain do-

mains, these methods are often unsuitable for representing particles with sharp corners or

distinct features. This will be discussed in greater detail in Chapter 3.

2.4.3 Volume Carving

Within computer vision, a large collection of research has been devoted to estimating

shape from object silhouettes. In the case where camera locations are known, Martin and

Aggarwal developed a computational method for approximating the bounding volume of

an object by intersecting extruded silhouettes of the object as seen from various view-

points [1983]. In this pioneering work, it is assumed that the silhouettes are obtained via

orthographic projection. Accuracy can be improved by using conical projections that orig-

inate from image viewpoints [Laurentini 1994; Matusik et al. 2000; Moezzi et al. 1996;

Szeliski 1993; Fang et al. 2003; Saito and Kanade 1999] and by incorporating photometric

measurements into the volume estimation process [Seitz and Dyer 1999; Kutulakos and

Seitz 2000; Kutulakos 2000]. As the number of viewpoints approaches infinity, the shape

of the result approaches that of the object’svisual hull. Unfortunately, this representation

is unable to capture certain types of shape concavities [Laurentini 1995].

Volume carving may result in models with a faceted appearance due to a limited number

of viewpoints. Some authors have attempted to smooth the surfaces by using splines for

the shape representation [Sullivan and Ponce 1998; Lazebnik et al. 2001].

For the images considered in this thesis, the observed 2D profiles represent object slices

rather than projected silhouettes. Furthermore, each profile is generated by a different parti-

cle, so there is no known correlation between distinct input shapes. Regardless, by applying

simplifying assumptions to the input data, I demonstrate the applicability of volume carving

methods for particle shape approximation.
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2.4.4 Generalized Cylinders

Within the computer vision community, the generalized cone and generalized cylinder have

long been recognized as effective primitives for shape representation due to their ability to

express a wide variety of shapes with few parameters [Binford 1971; Marr and Nishihara

1978; Brooks 1981]. In the graphics community, Dischler and Ghazanfarpour [1999] used

generalized cylinders to model discrete particle shapes embedded in macrostructured tex-

tures. However, the resulting shapes tend to exhibit unnatural symmetry that is often not

present in the input data.

This thesis considers the use of generalized cylinders for shape approximation and also

introduces a novel method derived from this representation.

2.4.5 Multiple Slices

For some data collection techniques, a dense series of 2D slices can be acquired from ad-

jacent planes within a 3D dataset. Methods that fall into this category include magnetic

resonance imaging (MRI), tomography, and confocal microscopy. In instances where mul-

tiple parallel slices are available, several techniques have been proposed for volumetric

reconstruction [Boissonnat 1988; Geiger 1993; Bouteiller and Baudry 2002; Barequet and

Sharir 1994; Meyers et al. 1992; Fix and Ladner 1998; Barequet et al. 1996; Barequet et al.

2003].

Unfortunately, costly resources are needed for most data acquisition technologies that

acquire densely sampled slices of volumetric data. Since 3D datasets are not readily avail-

able, they will not be further considered in this thesis. Instead, the focus will be on algo-

rithms for extrapolating information from easily obtainable 2D images.

2.5 2D Shape Perception

For the majority of the existing literature in shape approximation, the objective is to build

an accurate geometric reconstruction of an existing 3D object. In contrast, for a single input

image with discrete, uncorrelated profiles, there is insufficient information for extrapolating
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an accurate 3D model—the problem is, by nature, heavily unconstrained. A more appro-

priate objective is to approximate a particle shape that exhibits perceptually similar profiles

to those seen in the input. Since perceptual similarity can be a subjective measure, we need

some way of quantifying the results of various shape approximation algorithms.

In order to compare the similarity of profiles, a wide variety of metrics are available.

For an extensive overview of such techniques, I refer the reader to the summary by Lon-

caric [1998]. Unfortunately, few existing 2D shape comparisons metrics are perceptually

motivated, due in part to the complexity of the human visual system, which is not entirely

well understood. The shape metrics that will I consider in this thesis are motivated by prior

research that has identified curvature as an important characteristic discerned by low-level

human perceptual mechanisms [Dobbins et al. 1987; Or and Zucker 1989; Ben-Shahar

et al. 2003].

Specifically, I compare profiles using metrics of total curvature magnitude [Gardner

et al. 2004; Loncaric 1998] and area per square perimeter [Li et al. 2003], which is some-

times referred to ascircularity due to the fact that the metric yields a maximal value for

circular shapes.

These simple metrics cannot be expected to reliably capture all psychophysical aspects

of profile similarity, so direct user evaluation also plays a valuable role in shape compar-

ison. A number of authors have used direct psychophysical evaluation to assess visual

fidelity [Meyer et al. 1986; Rushmeier et al. 2000; Pellacini et al. 2000; McNamara et al.

2000]. Of particular interest in this area is work by Watson et al., who rate the performance

of automated metrics for predicting experimental results [2000; 2001]. The user experi-

ments described in their research measurenaming time—the elapsed time from when an

object is shown to a subject until it is named. However, this metric is inappropriate for

gauging the similarity of abstract shapes.

Martens and Myszkowski use a comparable methodology for evaluating the perfor-

mance of perceptually-motivated appearance metrics [1998]. In their psychophysical ex-

periments, users were asked to numerically rank the visual similarity of image pairs. This

thesis applies comparable methods for assessing the effectiveness of automated techniques

for predicting the perceptual similarity of 2D shapes.
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2.6 Summary

This chapter has described an extensive collection of prior research in the areas of computer

vision, computer graphics, stereology, and human perception. In the following chapters, I

introduce novel algorithms that build upon this foundation of prior work in order to esti-

mate particle shapes, recover particle distributions, and synthesize solid textures that appear

perceptually similar to example 2D texture inputs.
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Chapter 3

Particle Shape Estimation

A single slice through an aggregate material can reveal any number of 2D profiles. Since

each profile results from a slice through a different particle, there is insufficient information

to reconstruct any single particle exactly. The problem is, by nature, heavily unconstrained.

Without anya priori knowledge about the particles, we need to rely on limited assumptions

about their shape and distribution.

This chapter considers four different methods for approximating 3D shapes from 2D

profiles. Thespherical deformationandgeneralized cylindermodels described below were

introduced in prior publications; theconstructive solid geometryandmorphed generalized

cylindermethods are my own contribution to the problem.

Section 3.6 presents a comparison of these four techniques using automated, perceptually-

motivated metrics, as well as direct user evaluation. This analysis is similar to that of

prior authors who assess the performance of automated statistics as predictors of visual

fidelity [Martens and Myszkowski 1998; Watson et al. 2000; Watson et al. 2001].

The objectives in this chapter are twofold. The first goal is to determine which algo-

rithms are most effective for generating 3D particle shapes that exhibit 2D profiles with a

comparable appearance to the input data. The second objective is to assess how reliably the

automated metrics serve as predictors of the psychophysical evaluation.
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Constructive Morphed
Method

Spherical
Solid

Generalized
GeneralizedHarmonics

Geometry
Cylinder

Cylinder
Number of

input profiles
1 or more 3 2 3 or more

Treatment of Frequency orthogonal orthogonal orthogonal
input profiles data only silhouettes slices slices

Figure 3-1: Summary of input parameters and data assumptions for shape approximation
methods

3.1 Overview of Shape Estimation Methods

For all of the methods considered here, I assume that the particle shapes are genus zero—

i.e., the surfaces are topologically equivalent to a sphere. Furthermore, it is reasonable to

assume that the largest visible profiles result from slices near the center of the largest par-

ticles within the volume. Depending on the algorithm, one or more characteristic profiles

are selected from an image and used as input. The profiles are chosen by hand and are

expressed using a polygonal representation.

The methods differ in the number of profiles that are used as input and how the profiles

are incorporated into a 3D shape, as summarized in Table 3-1. For the spherical harmonics

method, only the frequency information of the 2D curve is considered, and the original in-

put profiles are not preserved in slices through the synthesized particle shape. Any number

of profiles can be used as input. For the results shown in this thesis, three curves are always

used.

The constructive solid geometry algorithm takes exactly three profiles as input. In this

case, I assume that the the profiles represent the silhouette of the object as seen from three

orthogonal views. A geometric model is constructed in a manner that preserves the input

profiles in the silhouette. However, the algorithm does not necessarily preserve the input

curves in slices through the novel particle.

For the generalized cylinder approach, two input profiles are used. The first input curve

and half of the second are incorporated directly into the geometry such that the they can be

seen in slices through the resulting particle. The remaining half-profile is ignored.

40



Finally, for the morphed generalized cylinder method, three or more input profiles can

be used. The examples shown in this thesis use exactly three inputs, which are preserved

in the construction process such that the same three profiles can be seen in slices through

the resulting geometric shape.

Each of these four methods will be discussed in greater detail in the following sections.

3.2 Spherical Deformation Models

A number of papers in both the graphics and stereological literature use spherical defor-

mation models as a foundation for representing particle shapes [Edvardson and Smedby

2002; Weistrand 2001; Hobolth and Jensen 2002; Hobolth 2003]. With these methods,

each particle is modeled as a sphere that is deformed inward or outward from its center.

Particles created with this technique are restricted to beingstar-shaped—i.e., all points on

the surface are visible from a single point within the particle.

In two dimensions, star-shaped profiles can be expressed as a radius-vector function

r(θ), 0≤ θ < 2π, which indicates the distance from the center of the profile to its bound-

ary in each radial directionθ . This function can then be expressed as a Fourier series

expansion,

r(θ) =
b0√
2π

+
∞

∑
m=1

bc
m

1√
π

cos(mθ)+
∞

∑
m=1

bs
m

1√
π

sin(mθ)

with the Fourier coefficients,

b0 =
∫ 2π

0
r(θ)

1√
2π

dθ

bc
m =

∫ 2π

0
r(θ)

1√
π

cos(mθ)dθ , m≥ 1

bs
m =

∫ 2π

0
r(θ)

1√
π

sin(mθ)dθ , m≥ 1

The radial basis functions corresponding tobc
m andbs

m are shown in Figure 3-2. Fig-

ure 3-3 shows three example profile shapes approximated with Fourier expansion series
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having five, ten, and fifteen terms. Note that the sharp corners become rounded—particularly

when few terms are used—but the general shape of each profile is maintained.

Similar to the two-dimensional case, in three dimensions, a star-shaped particle can

be expressed as a spatial radius-vector functiond(θ ,φ), 0≤ θ < 2π, 0≤ φ ≤ π. This

function indicates the distance from the center of the particle to its boundary in each polar

direction(θ ,φ). Just asr(θ) can be reexpressed as a Fourier series expansion,d(θ ,φ) can

be rewritten as a Fourier-Legendre series expansion

d(θ ,φ) = 1+
∞

∑
n=1

n

∑
m=−n

am
nYm

n (θ ,φ)

whereYm
n , (n≥ 1,−n≤m≤ n), are spherical harmonics, which can be though of as a basis

for Fourier series expansion in three dimensions. The spherical harmonics can be expressed

as follows:

Ym
n (θ ,φ) =

√
2n+1

4π

(n−m)!
(n+m)!

Pm
n (cosθ)eimφ

wherePm
n are the associated Legendre functions of the first kind [Weisstein 2003]. The

spherical harmonic bases are shown in Figure 3-4

Hobolth and Jensen create 3D particles based on 2D observations by relating the co-

efficientsb0, bs
m and bc

m of the 2D Fourier expansion to the coefficientsam
n of the 3D

Fourier-Legendre expansion [2002]. This relationship is based on the assumption that the

2D Fourier coefficients are mutually independent and that they form a stationary Gaussian

process on the underlying circular domain—i.e., the covariance between any two points

depends only on the angle between them. The 2D profile can be normalized via isotropic

scaling such thatb0 =
√

2π. We assume that the remaining Fourier coefficients are dis-

tributed according to a Gaussian function with mean 0 and varianceκm:

κm =
N

∑
n=1

bs
m+bc

m

2N

As with the Fourier terms in two dimensions, we assume that the 3D Fourier-Legendre

coefficients,am
n , are mutually independent and form a stationary Gaussian process on the
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Figure 3-2: Radial basis functions for Fourier series expansion.

Original 5 Fourier terms 10 terms 15 terms

Figure 3-3: The original profiles on the left are approximated with Fourier series expansion
with five, ten, and fifteen terms. General shape is maintained, but corners become rounded
when few terms are used.
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Y 0 (θ,φ)0

Y 1 (θ,φ)0 Y 1 (θ,φ)1Y 1 (θ,φ)-1

Y 2 (θ,φ)0 Y 2 (θ,φ)1 Y 2 (θ,φ)2Y 2 (θ,φ)-1Y 2 (θ,φ)-2

Y 3 (θ,φ)0 Y 3 (θ,φ)1Y 3 (θ,φ)-1Y 3 (θ,φ)-2 Y 3 (θ,φ)2 Y 3 (θ,φ)3Y 3 (θ,φ)-3

Figure 3-4: Spherical harmonic basis functions for Fourier-Legendre series expansion.

spherical domain with mean 0 and varianceλn. Hobolth and Jensen demonstrate that the

coefficientsam
1 can be ignored, and that the remaining variance values are related by the

expression

κm =
∞

∑
n=m

2n+1
2

(n−m)!
(n+m)!

Pm
n (0)2

λn, n≥ 2.

This relationship relies on the assumption that the particle shape frequencies are isotropi-

cally distributed in three dimensions. After solving for the variancesλn, Fourier-Legendre

coefficients can be chosen according to the Gaussian distribution, resulting in particles that

exhibit profiles with comparable frequencies to the input shape. It should be noted that any

number of particles can be generated with the recovered variance values.

This approach for particle modeling is mathematically rigorous, but ultimately attempts

to represent a complex shape with a small number of parameters by assuming isotropism,

mutually independent frequency coefficients, and frequency stationarity on the sphere. As

a result, the method is poorly suited for particles that exhibit sharp corners or distinct

44



Original 20 terms,
uncorrelated

20 terms,
correlated

Figure 3-5: The decorrelation of frequency terms in a Fourier expansion series can cause
deformations that impact the characteristic appearance of a 2D shape.

features.

The assumption that coefficients are mutually independent results in smoothing of sharp

angles or other features that may characterize the input. Figure 3-5 illustrates how dramatic

changes in appearance can result from the decorrelation of Fourier series expansion terms

in two dimensions. The square shown on the left can be effectively approximated with 20

terms, as shown in the middle. If the frequencies are decorrelated, as shown on the right,

the sharp corners disappear. The four-way symmetry is still apparent, but the shape loses

many of the features that characterize its appearance. It should be noted that the Fourier

coefficients in the middle and right images share identical variance values,κm. This same

type of decorrelation results when shapes are approximated in three dimensions.

In the work by Hobolth, the author uses only ten expansion terms to approximate

each shape, noting that the variance of the terms becomes excessively noisy after that

point [2003]. For our results, we use 30 expansion terms, but still fail to capture the sharp

features of the input profiles.

One inherent drawback of any spherical deformation method is the requirement that all

resulting particles must be star-shaped. This constraint becomes increasingly problematic

for long, slender particles with anisotropic shape characteristics.

3.3 Constructive Solid Geometry

As described in Chapter 2, if a static object is viewed from multiple calibrated viewpoints,

then volume-carving methods can be used to approximate the geometry [Martin and Ag-
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garwal 1983]. In contrast, in a 2D sample of an aggregate material, only one slice through

any individual particle can be seen. In order to constrain the reconstruction problem, I

select three characteristic profiles, which I assume are silhouettes of a single target parti-

cle shape, projected orthographically onto three orthogonally oriented viewing planes. I

align the three profiles using a heuristic to determine a likely correlation, and then apply

volume-carving techniques to yield an approximate 3D shape.

This approach makes extensive use of constructive solid geometry (CSG) modeling

methods [Mortenson 1999]. The objective is to build a particle such that the orthographic

projection of the 3D shape in thex, y, andz directions yields scaled versions of the three

input profiles. The basic approach is to extrude each of the three input profiles and then

arrange the three extruded volumes orthonormally. The CSG intersection of the volumes

yields the particle. This process is shown in Figure 3-6.

In order to maintain the shape of the input profiles during the CSG intersection oper-

ation, the profiles must first be transformed such that their bounding boxes have the di-

mensionsa×b, b× c, anda× c for somea, b, andc. In the first preparation step, each

profile is rotated such that profile’s second-order moment is aligned with thex-axis. The

three profiles are then sorted according to the aspect ratio of their bounding boxes. This

sorting yields profilesc0, c1, andc2, with decreasing aspect ratiocny/cnx wherecnx and

cny are respectively the width and height of the bounding box ofcn. In order to minimize

the change in aspect ratio of the input profiles, I select bounding box extentsa, b, andc as

follows:

a = c0x

b = c0y

c = c0xc2y/c2x

Finally, I scale the profiles such that these dimension constraints are met, extrude each

profile in the direction perpendicular to the image plane, and arrange the extruded volumes

such that the bounding boxes are aligned as shown in Figure 3-6(b). The CSG intersec-
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(a) (b) (c)

Figure 3-6: Constructive solid geometry (CSG) method for particle construction. Input
profiles (a) are extruded and arranged orthonormally (b). The CSG intersection of the three
extruded solids (c) yields a plausible 3D particle shape.

tion of the extruded volumes is guaranteed to exhibit the three input profiles when viewed

orthographically, regardless of the convexity of the input shapes. However, this does not

necessarily mean that the input profiles are preserved in slices through the novel particle.

The particles generated by this process tend to exhibit cross-sections that are perceptu-

ally similar to the input profiles, with the exception of a few long, slender shapes or hard

corners that may be introduced by the process. It should be noted that at every point on the

particle, the surface normal will be perpendicular to either thex-, y-, or z-axis. This results

in a faceted look that may make this modeling approach unsuitable for applications where

the complete 3D particles are viewed directly.

3.4 Generalized Cylinder Model

Dischler and Ghazanfarpour model macroscopic particles using a generalized cylinder

method [1999]. The inputs to the algorithm are two representative particle profiles—a

sweep curves and a base curveb. The sweep curve is formed by cutting a profile in half

along a vertical line that passes through its centroid. The other half of the profile is dis-

carded.

Dischler and Ghazanfarpour choose to represent these two curves as radius-vector func-

tions,s(θ) andb(θ), 0≤ θ < 2π, which are expressed as interpolating cubic splines with

32 vertices at regularly spaced angular intervals. When using this representation, profile

shapes are constrained to being star-shaped, as are novel particles generated by the method.
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s(t) b(t)
p(ts, tb)

Figure 3-7: Generalized cylinder method for particle construction. The construction curves
shown on the left are used to create the particle shape on the right.

To enable the algorithm to operate on a larger class of geometric inputs, I relax this con-

straint by instead expressings andb parametrically as a function oft, where 0≤ t ≤ 1:

s(t) =

 xs(t)

ys(t)

 andb(t) =

 xb(t)

yb(t)


Using the curvess andb, a 3D particle can be constructed by sweeping the curves

around the base profileb to form a generalized cylinder as shown in Figure 3-7. The axis

of rotation is defined to be perpendicular tob, passing through its centroid. Curves is then

oriented perpendicular to curveb such that its endpoints lie on the axis of rotation ands

is tangent tob(t) at t = 0. The particle shape is defined by the set of all pointsp(tb, ts),

0≤ tb < 1 and 0≤ ts≤ 1, such that

p(tb, ts) =


xb(tb)xs(ts)/‖b(0)‖

yb(tb)xs(ts)/‖b(0)‖

ys(ts)


where the normalization term‖b(0)‖ is used to insure that curves remains tangent tob.

Figure 3-8 shows some example particle shapes generated by the generalized cylinder

algorithm. The process is intuitive and can be used to generate a variety of geometric

shapes; however, the particles created by this method tend to have a synthetic appearance,

as they exhibit clear symmetry around the axis of rotation.
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Figure 3-8: Example shapes created by the generalized cylinder method. The construction
curves shown in the top row result in the particle shapes in the bottom row.

Input curves Resulting shape

Figure 3-9: Morphed generalized cylinder method for particle construction. The base curve
(red) and morph curves (green and blue) result in the shape shown at the right.

3.5 Morphed Generalized Cylinder Model

The final particle generation algorithm that we consider here is a novel approach introduced

in this thesis. The method is motivated by the idea of establishing a set of orthogonally

oriented wireframe constraints, and then creating a naturally shaped particle that smoothly

interpolates between the constraints. The particle is created in a manner similar to that

described for the Generalized Cylinder Method, with the exception that the generatrix curve

is morphed from one constraint to the next as it is swept along the directrix, or base curve.

To begin, the input profiles are reoriented and sorted as indicated in Section 3.3. As
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described in the previous section, the base profileb—shown in red in Figure 3-9—is used

as the directrix. The remaining curves, which we will refer to as morph curves, collectively

take the place of the sweep curves used in the generalized cylinder algorithm. Ifn total

profiles are used as input, then morph profilesm0 throughmn−2 are oriented perpendicular

to the base curve with equal angular spacing around the axis of rotation. For the examples

shown in this thesis, three total curves are used, and the profile with the aspect ratio closest

to one is selected as the base curve. However, it should be noted that different particle

shapes can be generated either by using a different number of input curves or by considering

alternate permutations of the input profiles.

The next step is to scale each profile to guarantee intersections at the black points shown

in Figure 3-9. Meeting these constraints can be a difficult task if profiles are modified with

uniform linear transformations. The algorithm does not restrict the profiles to be star-

shaped, so the optimization space can be discontinuous and arbitrarily poorly behaved.

Instead, I choose to meet the constraints by cutting the morph profiles at each point where

I expect two profile curves to meet. I then scale each region of the profile independently.

To insure that each morph curve lies tangent to the base curve, morph profiles are scaled

inward or outward from the axis of rotation. Next, I scale the curves along the axis of

rotation to insure a common intersection at the poles.

In order to apply the morphed generalized cylinder algorithm, we need to establish a

parameterization that allows for interpolation between successive morph curves. I have

chosen to parameterize each profile according its normalized arc length [Verth and Bishop

2004].

The cumulative length along a curves(t) = [x(t),y(t)]T , 0≤ t ≤ 1 can be expressed as

follows:

l(t) =
∫ t

0

√
x′2(t)+y′2(t)dt

To reparameterize the curve by its normalized arc length, we create a new expression

sR(t) such that

50



m0(t)

m1(t)

b(t)

p(tm, tb)

m0(t)

m1(t)

b(t)

m(t)

Figure 3-10: Construction process for the morphed generalized cylinder method. The con-
struction curves shown on the left define the portion of the particle shape shown on the
right.

sR(t) = s(l−1(l(1)t)),

noting thatl(1) is the total length of curves. For the remainder of this section, we will

assume that all curves have been reparameterized according to their arc length.

To demonstrate the construction process, we consider, without loss of generality, the

region of the surface enclosed by three curves—morph curvesm0(t) andm1(t) and a portion

of the base curveb(t), as shown in Figure 3-10. I express the three curves parametrically,

parameterized according to their arc length, such that for each curve region, 0≤ t ≤ 1:

m0(t) =

 x0(t)

y0(t)

 , m1(t) =

 x1(t)

y1(t)

 andb(t) =

 xb(t)

yb(t)

 .

The morphed generalized cylinder algorithm creates a 3D particle by interpolating the

shape of the morph profiles. We use the morph curve,m, as the generatrix as it is swept

along the directrix, or base curve,b.

At an intermediate positiontb between morph curvesm0(t) andm1(t), we linearly in-

terpolate to define the morph curve,

m(tb, t) =

 xm(tb, t)

ym(tb, t)

 = (1− tb)m0(t)+ tbm1(t).

With the help of this expression, we can define our desired surface as the collection of
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all pointsp(tb, tm), 0≤ tb ≤ 1 and 0≤ tm≤ 1, such that

p(tb, tm) =


xb(tb)xm(tb, tm)/‖m(tb,1)‖

yb(tb)xm(tb, tm)/‖m(tb,1)‖

ym(tb, tm)

 . (3.1)

By interpolating the profiles individually over each region enclosed by three curves, we

are able to guarantee that all of the initial constraints are met precisely. The normalization

term‖m(tb,1)‖ in Equation 3.1 is necessary for enforcing this condition. An example shape

generated by this process is shown on the right side of Figure 3-9.

3.6 Algorithm Comparison

To evaluate the relative performance of each of the four proposed algorithms, I consider

the use of automated comparison metrics based on perceptually motivated criteria, as well

as a user study in which participants attempt to discriminate between original and synthetic

shape data.

The particle shapes used as a basis for comparison were obtained from 3D scans of four

different rocks that were deliberately selected to span a wide variety of input appearances.

Thesmoothparticle is a rounded, convex surface. Theelongatedshape is more elliptical

with a few sharp edges. Thefacetedmodel is nearly convex and exhibits a number of sharp

edges. Finally, thecomplexmodel is highly non-convex and is the only one of the four

meshes that is not star-shaped.

Each particle was approximated with each of the four reconstruction methods, resulting

in a total of 20 particle shapes, including the originals. The input to the algorithms came

from three orthogonally oriented profiles taken from the original particles. The orthonor-

mal basis was selected to correspond approximately with each particle’s first and second

moments of inertia. Each of the 20 polygon meshes was scaled uniformly to insure that all

particles have the same volume. Figure 3-11 shows the original particle shapes and the de-

coy particles generated by each algorithm. Randomly selected central slices through each

particle are shown in Figure 3-12.
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Figure 3-11: In the left column are the four scanned particle shapes used as the inputs to
the shape approximation algorithms. To the right are the decoy particle shapes created by
each of the four particle approximation methods.

3.6.1 Automated Performance Evaluation

For the purposes of this research, it is important that the synthetic particle shapes have a

plausible appearance and that the particles yield profiles that are perceptually similar to the

example data. Thus, I choose to evaluate the resulting particle shapes based on metrics

that are motivated by human perception. Curvature in two dimensions is theorized to be

an important characteristic identified by low-level human perceptual mechanisms [Dobbins

et al. 1987; Or and Zucker 1989; Ben-Shahar et al. 2003]. The two metrics that I consider

here are the total curvature magnitude of a profile and the measure of area per perimeter

squared, also known as circularity [Gardner et al. 2004; Loncaric 1998; Li et al. 2003].

Each is an indicator of the visual complexity of a curve.

The total curvature magnitude is computed by summing the absolute value of the change

in angle at each point along the curve. If the profile is convex, then this value sums to 2π.
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Figure 3-12: This table shows randomly selected central profiles for each original and syn-
thesized particle shape. Profiles that are poorly matched to the original data are highlighted
in color. Red profiles are overly curved or blobby, yellow profiles exhibit excessively sharp
corners, and green profiles show symmetry that is not present in the original data.

Higher values indicate a higher degree of shape concavity. The circularity metric can range

from a value of zero for degenerate shapes with zero area to a maximum of 1/4π, which

can only be achieved by a perfect circle.

To produce the values shown in Figure 3-13, I created a utility that sliced through each

particle 10,000 times at uniformly distributed random orientations. I applied the automated

metrics to the profiles and averaged the resulting values.

For the two graphs in the top row, the particles were always sliced through their center

of mass. This yields profiles with relatively uniform statistics but fails to capture anomalous

appearance characteristics that may occur at slices that are more distant from the particle

center.

In the second row, the values were obtained by slicing particles at both a random ori-
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Random profile slices

Profile slices through particle origin

Figure 3-13: Original and synthetic particle shapes are compared via two measures of 2D
visual complexity: total curvature and area/perimeter2. These charts show the mean and
standard deviation values obtained from 10,000 random slices through each particle shape.
The top row shows values obtained from slices passing through the center of the particles.
In the second row, slices are randomly selected.
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Metric Profile Slice Algorithm
MorphedSpherical

CSG
Generalized

GeneralizedHarmonics Cylinder
Cylinder

Center of Mass 5.0% 2.5% 1.6% 1.4%Area/Perimeter2
Random 4.0% 5.4% 1.9% 1.6%

Center of Mass 27.8% 20.6% 8.2% 9.5%Total Curvature
Random 19.5% 18.6% 7.8% 9.3%

Figure 3-14: Average deviation from original data values for each algorithm, as measured
for each of the two metrics and profile slicing techniques.

entation and a random offset from the particle’s center of mass. The values obtained in

this manner statistically represent the profiles that are visible in a slice through a volume

of particles embedded in an opaque medium, much like the image shown in Figure 1-3(a).

As expected, these profiles exhibit a greater diversity of appearances, resulting in higher

standard deviation values.

To analyze the significance of these results, I apply analysis of variance (ANOVA),

which measures the probability,p, that the results are a product of thenull hypothesis—

i.e., the probability that there is no difference between the algorithm performance, and the

variability shown in the results is the product of chance [Cobb 1998]. For all of the datasets

considered in this chapter, I set a threshold of significance atp≤ 0.01. For each of the

four tables in Figure 3-13, a two-way analysis of variance (ANOVA) reveals a significant

dependence on shape and choice of algorithm (p < 0.001), and also indicates significant

interaction between the two factors (p < 0.001).

Figure 3-14 summarizes the shape statistics, showing the average deviation from the

original data for each of the shape approximation algorithms. Based on these values, we

see that the generalized cylinder and morphed generalized cylinder methods perform bet-

ter than the spherical harmonics or CSG methods for matching the given shape statistics.

However, there is no consensus on a total ordering of the four algorithms.

These methods attempts to capture perceptually meaningful criteria with a simple met-

ric, but there are some drawbacks to the approach. The total curvature metric is sensitive

to shape tessellation. Highly tessellated profiles may include high-frequency information
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that increases the total curvature magnitude without greatly contributing to the overall ap-

pearance of the shape. To a lesser extent, the perimeter calculation is also susceptible to

this problem. Furthermore, as shown in Figure 3-12, some of the characteristics that dis-

tinguish the decoy profiles from the original profiles include the presence or absence of

sharp corners, as well as the presence of symmetry. These characteristics, while easily seen

by a human observer, are not captured by the statistics considered here. To obtain more

definitive results, I consider the input of human observers, as described in the following

section.

3.6.2 User Study

To obtain a more disciplined evaluation of the four proposed algorithms for shape approxi-

mation, I authored a user study in which participants attempt to distinguish between original

and synthetic texture data. Users were shown a series of images in a computer-based test

in which they were asked to evaluate shape similarity.

Data

All of the data used in the study was synthetically produced in order to keep the images free

of noise, which would otherwise lend a distinctive appearance to the physically captured

images. The study used the same four particle shapes described previously and shown in

Figure 3-11.

For each shape, a synthetic volume of 1000 cubic units was populated with particles

of constant size. The volumes for thesmooth, elongated, and faceteddatasets contain

4000 particles, each of which has a size of 0.125 cubic units. Thus, 50% of the volume

is occupied. The datasets for thecomplexparticle shapes contain 3500 particles, yielding

volumes that are 44% occupied.

Of course, most real-world volumes do not exhibit particles that are all of the same

shape and size. For the purposes of the user study, I deliberately eliminate the presence

of other variables to allow users to focus on shape. However, it should be recognized that

different particle distributions may play a role in shape perception.
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Figure 3-15: Example screen from user study. Users are asked to select the image that is
least similar to the image in the center. Here, a decoy image is shown on the far right.

Procedure

To evaluate the effectiveness of the methods, study participants were given a computer-

based test to compare image similarity. Users were shown a series of screens, each con-

taining three images in a row, as depicted in Figure 3-15. In most instances, the center

image and one of the adjacent images were generated by taking a slice through one of the

four original volumes. The third image was generated by taking a slice through a decoy

volume, generated using one of the four proposed methods. Users were asked to click on

the image that appeared to be the least like the center image and were explicitly asked to

evaluate the images based on the shape of the visible profiles rather than their size, density,

or distribution. The test interface measured the accuracy and time required to make each

selection.

To establish a baseline for the average selection time, 20% of the test screens con-

tained three images that were all taken from the same volume. This is used to measure

user response to anideal particle—i.e., a theoretical decoy particle that has an identical

appearance to the original shape.

The images used for the study depict black particles on a white background and are

antialiased with a size of 250x250 pixels. Images were separated by 40 pixels of a neutral

grey color. Users were seated comfortably in a dimly lit room at a distance of approximately

55cm from the computer monitor. Each image was shown at a size of 7.8cm, forming a
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Figure 3-16: User study results showing the relative performance of four different algo-
rithms for extrapolating particle shape based on limited shape information. The graph on
the left shows the frequency with which users were “fooled” by a decoy model. Average
selection times are shown on the right. Mean and standard deviation values are shown for
both graphs.

visual angle 8.1 degrees.

In accordance with the guidelines established by the MIT Committee On the Use of

Humans as Experimental Subjects (COUHES), each participant in the study was given a

detailed written description of the study procedures, as well as a summary of their rights as

a research subject. This consent form is included in Appendix A.

All study participants are members of the computer graphics and computer vision com-

munities at MIT, none of whom had any considerable knowledge of the specific algorithms

being tested. Participation was completely voluntary, and users were not compensated in

any form.

Prior to the start of the test, users were given a brief training session, which included

an example test with ten evaluations to familiarize them with the task and interface. The

complete test contained 80 questions—four for each particle/algorithm combination, plus

four questions for each particle shape in which no decoy was shown. The questions were

presented in a different random order for each user, and images were randomly selected

from a database for each screen. Between evaluations, users were shown a neutral grey

screen for one second.
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Results

Sixteen users participated in the study, yielding 1280 individual data points. The results

of the study are summarized in Figure 3-16. In the first chart, we see the success rate at

which the decoy particles were selected by the users. In the case of an ideal decoy particle,

we would expect a success rate of 50%; i.e., we expect that a user would be equally likely

to select the image from the original volume or the decoy volume. This baseline value is

indicated by the light blue bar at the far left.

These values indicate a decisive ordering of algorithm effectiveness, ranking the mor-

phed generalized cylinder method with the highest performance, followed by generalized

cylinders, constructive solid geometry, and spherical harmonics. One-way analysis of vari-

ance (ANOVA) demonstrates that decoy success has a significant dependence on the algo-

rithm used (p < 0.001).

These same results are reflected in the second table in Figure 3-16, which shows the

average time the users spent making their selections. The baseline time is shown in light

blue on the far left; this represents the case where all three images were derived from the

same volume, and can be considered to be indicative of selection time for an ideal decoy

particle. Again, ANOVA indicates a significant dependence on the algorithm used to create

the decoy particles (p < 0.001).

Selection time should not, in and of itself, be considered a measure of algorithm per-

formance. It does, however, provide some indication of how much user effort is involved

in assessing shape similarity. In this study, I have chosen to use the metric to validate the

results obtained in the ranking of decoy success. The relation between the measures of

decoy success and selection time can be clearly seen from a comparison of the two charts

in Figure 3-16.

As shown in Figure 3-17, the behavior of each algorithm can be considered more pre-

cisely by breaking apart the data and looking at how the performance of each method varies

with different input parameters. Two-way analysis of variance applied to the decoy suc-

cess rate indicates that performance has a significant dependence on the algorithm used

(p < 0.001) as well as the shape that is being approximated (p = 0.003). Furthermore,
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Figure 3-17: Detailed graph of user study results showing variation between input datasets.
The graph on the left shows the frequency with which users were “fooled” by a decoy
model. Average selection times are shown on the right. Mean and standard deviation
values are shown for both graphs.

ANOVA indicates a significant interaction between the algorithm and shape (p < 0.001).

For each of the datasets, the morphed generalized cylinder algorithm generates more

successful decoys than the other three alternatives. However, the relative performance of

the other methods varies widely.

The spherical harmonics algorithm is acceptable for replicating the appearance of smooth

surfaces that lack sharp features, but is poorly suited for representing elongated shapes

or particles with sharp corners. In contrast, CSG provides a reasonable approximation

for elongated particles or surfaces with sharp edges, but is poorly suited for representing

rounded shapes.

As for the generalized cylinder method, I found that the algorithm tends to create pro-

files with clear symmetry across the axis of rotation. As a result, we see that the algorithm

performs well for replicating particles that exhibit symmetry in the input dataset, but the

method performs poorly on asymmetric shapes.

Once again, selection time should not be considered as a direct measure of algorithm

performance, but serves to validate the ranking of decoy success. For the most part, the

relative values in the left and right tables of Figure 3-17 are well-correlated. Two-way

analysis of variance on the selection times indicates a significant dependence on the algo-

rithm (p < 0.001). However, selection time does not exhibit a significant dependence on
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the particle shape (p = 0.36), nor does ANOVA indicate a significant interaction between

the algorithm and shape (p = 0.16).

When looking at the standard deviation values in Figure 3-17, it should be remembered

each user observed only four instances of each combination of shape and algorithm. For a

rating of decoy success, this results in only two bits of information, yielding values of 0%,

25%, 50%, or 100%. High levels of variability in these values should be expected. Regard-

less, for both graphs, ANOVA demonstrates a significant dependence on the algorithm.

3.6.3 Performance Summary

Of the four algorithms considered here for replicating aggregate materials, this research

points to the morphed generalized cylinder method as the most effective for approximating

3D particle shapes from 2D profiles. The three other methods—generalized cylinders,

constructive solid geometry, and spherical harmonics—are each effective within certain

domains, but do not generalize well to a wide variety of input shapes.

Automated metrics for predicting psychophysical response can be enormously useful

for evaluating research results, as it is not always desirable or plausible to perform a com-

plete user study. The automated techniques considered here are marginally successful for

predicting algorithm performance from a psychophysical standpoint.

Only one of the metrics yields the same ordering as the user study, as seen from a

comparison of Figures 3-14 and 3-16. The most accurate predictor is the measure of

area/perimeter2 applied to profiles through the particle’s center of mass. Of the remaining

metrics, each ranks the generalized cylinder and morphed generalized cylinder methods

above the spherical harmonics and CSG methods, but there is no consensus on the total

ordering.

One shortcoming of the automated metrics presented here is that they are unable to

capture some of the appearance characteristics that were discerned by the user study. To

improve automated prediction of perceptual shape similarity, additional metrics should be

considered that account for symmetry, anisotropy and the presence of sharp corners.

Future researcher may consider the use of the metrics in this thesis as coarse predictors
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Figure 3-18: In the left column are characteristic profiles for each of four different real-
world datasets. To the right are the 3D particle shapes created by each of the four particle
approximation methods.

for shape similarity, but these automated techniques should not be treated as equivalent

replacements for direct user evaluation.

3.7 Working with Real Data

When working with real data, there are a few caveats that must be considered. For the

synthetic volumes that were described in the preceding sections, all particles have the same

shape and size. For real volumes, it’s not clear how many distinct particle shapes may be

necessary to achieve the diversity of appearances that are present in the input sample.

While the temptation may be to use a large number of synthetic particles, it should be

recognized that even simple particle shapes can exhibit a wide variety of profile appear-

ances. For instance, a cube can exhibit profiles with anywhere from three to six faces. A

cylindrical particle can exhibit profiles that appear as circles, ellipses, semicircles, rect-
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Figure 3-19: In the left column are characteristic profiles for each of four different real-
world datasets. To the right are randomly selected central profiles for each synthesized
particle shape. Profiles that are poorly matched to the original data are highlighted in color.
Red profiles are overly smooth or curvy, yellow profiles exhibit excessively sharp corners,
and green profiles show symmetry that is not present in the original data.

angles, parallelograms, closed parabolas, or a variety of other shapes. More complicated

particles can exhibit an even greater array of profiles.

To test the four proposed methods on real world-data, I applied the algorithms to the

input profiles shown in the left column of Figure 3-18, which were taken from segmented

photographs of texture images. The corresponding synthetic particle approximations are

shown on the right.

Central slices through these synthetic particles are shown in Figure 3-19. The appear-

ance artifacts are comparable to those seen in Figure 3-12. As before, certain types of

perceptual artifacts are associated with each particle estimation algorithm. Particles gen-

erated with the spherical harmonics algorithm tend to be overly smooth or blobby, CSG

particles exhibit sharp corners, and generalized cylinder particles yield profiles with dis-
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tinct symmetry.

Within the framework of the complete texture synthesis system, the performance of the

shape approximation algorithms can be evaluated by looking at annealed texture volumes

that include particles created with each method. In the left-hand column of Figure 3-20 are

segmented regions from four input textures. The images on the right show slices through

annealed 3D volumes that were created using the distribution recovery and annealing tech-

niques described in the following chapters. Each synthetic image exhibits only one 3D

particle shape varied under rotation, translation, and isotropic scaling.

In Figures 3-12, 3-19, and 3-20, I manually selected synthetic particle shapes that

are poorly matched to those in the input texture. These shapes are highlighted in color to

illustrate how they differ perceptually from the input. Red profiles are overly smooth or

curvy, yellow profiles exhibit excessively sharp corners, and green profiles show symmetry

that is not present in the input data.

Figures 3-19, and 3-20 corroborate our earlier findings that the morphed generalized

cylinder is most effective for synthesizing particles over a wide variety of input appear-

ances. Furthermore, they demonstrate that even a single synthetic particle shape can effec-

tively convey the variety of 2D profile shapes seen a real-world texture.

3.8 Shape vs. Texture

Even though Figures 3-19 and 3-20 depict essentially the same data, there is a difference

in how the images are perceived. The tabular format shown in Figure 3-19 emphasizes

the structured attributes of the profile slices, which are seen as distinct shapes. In contrast,

Figure 3-20 emphasizes the stochastic attributes of the profile slices, causing the images to

be perceived as texture.

This difference in perception suggests the need for similarity metrics that operate both

in the structured domain of profile shape and the stochastic domain of annealed textures.

Future research may attempt to discern specific differences in how humans perceive images

along this scale of appearances.
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Figure 3-20: In the left column are segmented textures obtained from photographs of com-
posite materials. The four columns on the right show synthetic textures, each of which
exhibits a single 3D particle shape created by the indicated method. Profile shapes that do
not appear similar to the input texture are highlighted in color.

3.9 Summary

This chapter has introduced four different methods for approximating particle shapes from

characteristic 2D profiles. The constructive solid geometry and morphed generalized cylin-

der methods are novel contributions in this area of research. A rigorous user study indicated

that the morphed generalized cylinder method outperforms the three other algorithms un-

der a variety of input conditions. The other three methods—spherical harmonics, CSG, and

generalized cylinders—each perform well under some circumstances, but are limited in the

types of profile appearances they can effectively replicate.

Due to the unconstrained nature of the particle extrapolation problem, we rely heavily
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on assumptions about the input data in order to derive reasonable solutions. In the case

of the spherical deformation method, one underlying assumption is that the frequencies

seen in a profile are unrelated and can be modeled using a stationary Gaussian process.

This results in the elimination of sharp corners that may be seen in the input data. Future

research may consider the possibility of modifying the algorithm in a manner that respects

the dependencies observed between the frequency bands in the input.

Although the spherical harmonics algorithm had the worst performance in terms of

exhibiting similar 2D profiles, the particles that are created by the method have a satisfying

appearance in 3D. This suggests that if the internal structure of a material is to be viewed

directly, then the spherical deformation method may still offer a reasonable solution.

The four methods described here are presented in the context of synthesizing particles

that will be viewed through 2D slices. Looking beyond this domain, the morphed general-

ized cylinder method may offer a solution for general shape modeling with simple, limited

user input. Generalized cylinders have long been valued for their ability to represent a wide

range of appearances with compact, intuitive parameters. Morphed generalized cylinders

offer a wider array of 3D appearances, but can still be created with simple parameters.

Very little computational effort is required to create a particle with this approach, which

suggests the possibility of a user interface where an artist can edit three control curves

simultaneously and immediately see the changes to a 3D model.

In addition to the user study, two automated metrics—total curvature and circularity—

were considered for approximating perceptual shape similarity. These metrics were only

marginally successful at predicting psychophysical response, and other metrics should be

considered in future research. A number of other 2D shape metrics have been introduced

within the computer vision community, but the vast majority are designed to identify object

features—often points with high curvature—for object recognition. Unfortunately, these

types of established metrics are of limited use when attempting to quantify the subjective

similarity of abstract shapes.

Particle shapes recovered with the algorithms described here can be used as inputs to

the next stage in the solid texture synthesis pipeline. The following chapter demonstrates

a method for approximating particle size distributions based only on the particle shape and
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the observed profile distribution in a 2D slice through a real-world material.
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Chapter 4

Estimating 3D Distributions

An important observation in stereology is that the macroscopic statistics of a 2D image are

related to, but not equal to the statistics of a 3D volume. In this chapter, I present a disci-

plined approach to recovering 3D volume parameters using methods motivated by spatial

sampling theory. I begin by demonstrating the approach with a distribution of spheres, and

then extend the approach to work with arbitrary particle types.

4.1 Distributions of Spheres

To illustrate the process, we first consider a 3D distribution of spherical particles having a

maximum diameter ofdmax. A 2D slice through the volume results in circular profiles, also

having a maximum diameter ofdmax. Our objective is to establish a relationship between

the size distribution of 2D circles, expressed as the number of circles per unit area, and the

size distribution of 3D spheres, expressed as the number of spheres per unit volume. This

process is known asunfolding. The approach demonstrated here is most similar to that

proposed by Saltikov [1967].

For any distribution of identical convex particles, particle density,NV , is related to the

profile density,NA, by the fundamental relationship of stereology [Underwood 1970],

NA = H̄NV , (4.1)
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Figure 4-1: In this set of three equations, the blue disks represent profile densities,NA(i),
the green spheres represent particle densities,NV(i), and the red and white spheres represent
the probabilities that a sphere of a given size appears with a particular profile size. The first
two expressions are used to calculate the densities of the largest and smallest profile sizes
respectively. These and the remaining density computations are expressed in the matrix
equation.

whereH̄ is the mean caliper diameter of the particle, i.e., the distance between tangent

planes averaged over all orientations of the particle. For spheres,H̄ is simply the diameter.

For most aggregate volumes, it is unlikely that the particles will all be of the same size,

so it is more effective to use a histogram approach that is common to a number of stere-

ological algorithms. Both particles and profiles are grouped according to their diameter

into n evenly sized bins. Spherical particles are clustered according to their diameter to

yield particle densitiesNV(i),{1≤ i ≤ n}. In a random 2D slice through the volume, cir-

cular profiles are similarly clustered according to their diameter to yield profile densities

NA(i),{1≤ i ≤ n}.

The densitiesNV andNA are related by the valuesKi j , which express the relative prob-

abilities that a sphere in thejth histogram bin with diameterj/n, exhibits a profile in the

ith histogram bin with diameter(i−1)/n < d≤ i/n. Profiles of the largest size,NA(n) can
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only result from slices near the equator of the largest spheres,NV(n). This relationship is

visually represented at the top of Figure 4-1 forn = 4 anddmax= 1. In contrast, profiles of

the smallest size,NA(1), can result from a slice near the poles of a sphere of any diameter,

as expressed in the second equation in Figure 4-1. The complete density vectorsNV and

NA are related by the expression

NA = dmaxKNV .

The corresponding visual representation is shown at the bottom of Figure 4-1. Spheres can

only exhibit profiles of equal or smaller diameter, soK is an upper-triangular matrix where

Ki j =

 1
n

(√
j2− (i−1)2−

√
j2− i2

)
for j ≥ i

0 otherwise

Given this relationship, if we know the profile density distributionNA, we can solve for

the particle densitiesNV as

NV =
1

dmax
K−1NA.

SinceK is an upper-triangular matrix, its determinant is the product of the diagonal

elements—all of which are nonzero. Thus,|K| is nonzero, andK is guaranteed invertible.

In practice, the explicit matrix inverse never needs to be taken, as it is simple to solve for

NV using back-substitution.

4.2 Distributions for Other Particles

For a nonspherical particleP, we cannot easily classify the profile size according to its

diameter, so we need a different metric. I have chosen to use
√

A/Amax, whereA is the

area of the profile andAmax is the largest encountered area of any profile. The profile area

can be easily and reliably measured in digital images simply by counting pixels. Taking

the square root results in values that tend to be more evenly distributed among equally

sized histogram bins—a property that is important for minimizing numerical error. This
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also establishes a linear relationship between the profile measure and the particle scale. In

contrast, prior authors have instead opted to categorize profiles according toA/Amax, but

used a nonlinear scale for histogram bins [Saltikov 1967; Underwood 1970]. Note that

classifying profiles by
√

A/Amax is equivalent to classifying spherical particles byd/dmax

as was done in Section 4.1.

As with spherical particles, we must compute a matrixK to relate particle size to profile

size. This relationship can be expressed as

NA = H̄KNV (4.2)

whereH̄ is the mean caliper diameter of particleP. Each matrix entryKi j represents the

normalizedrelative probability that a particle in columnj exhibits a profile in rowi. More

explicitly, particles in columnj are scaled uniformly byj/n, and profiles in rowi have a

classification value
√

A/Amax between(i −1)/n and i/n. We refer to these probabilities

as normalized in the sense that the probabilities in the final column ofK sum to 1, and for

each columnj,

n

∑
i=1

Ki j = j/n

Note that if only one histogram bin is used (n = 1), then Equation 4.2 reduces to the

fundamental relationship of stereology (Equation 4.1).

For an arbitrary particleP, represented as a watertight polygon mesh, it may be difficult

to compute theK matrix analytically. To compute these values, I use a Monte Carlo ap-

proach that averages statistics observed by repeatedly slicing through the particle, as shown

in Figure 4-2. At each step, the polygon mesh is assigned a random orientation and a cut-

ting plane at a random depth. To compute the area of each observed profile, I implemented

two different methods with trade-offs between speed and simplicity.

The first method can be easily implemented in a robust manner and takes advantage

of the speed of modern graphics hardware and thestencil buffer, which can manage sup-

plemental information about a rendered image [Woo et al. 1999]. At each iteration of the

Monte Carlo process, the polygon mesh for particleP is rendered such that the near clip-
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Figure 4-2: TheK matrix for an arbitrary particle is constructed by calculating the cross-
sectional area of random slices through the volume. If a single slice exhibits more than one
profile, then each distinct region should contribute independently to the histogram.

ping plane of an orthographic camera is coincident with the random cutting plane. As the

mesh is rendered, the stencil buffer counts how many times each pixel is touched during

rasterization. Odd values indicate that a pixel is inside the cross-section; even values denote

pixels outside the cross-section. Thus, calculating the area is a simple matter of summing

the odd-valued pixels in the stencil buffer.

The second method is based on thewinged edge meshdata structure [Baumgart 1972].

This approach is more difficult to implement robustly, but can calculate profile statistics

more quickly and accurately. The polygon mesh for particleP is annotated such that each

edge stores a pointer to the two adjacent triangles and each triangle stores pointers to the

three adjacent edges. The algorithm begins by looking for an edge whose endpoints lie on

opposite sides of the cutting plane. Once this is found, the polygon mesh can be rapidly

traversed by taking advantage of the local connectivity information.

The calculations derived from either method can be used to populate the histogram for

each column of theK matrix. The Monte Carlo process must keep track of the maximum

encountered profile area,APmax, and can also be used to compute the mean caliper diameter

of P, H̄P.

In some instances, a slice through a non-convex particle may result in two or more

disjoint profiles, as shown in the top slice in Figure 4-2. If this were to occur in a real-

world material sample, there would be no reliable way to discern if the adjacent profiles

were the product of one or two distinct particles, and each would be considered separately

73



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

pr
ob

ab
ili

ty

sphere
cube
long ellipsoid
flat ellipsoid

A/Amax

Figure 4-3: Likelihood of cross-sectional area for simple particle types.

when computing the profile density vector,NA. Thus, when populating theK-matrix, each

disjoint profile region in a particle slice should be considered separately, and each should

contribute to the histogram construction.

For each particle type I tested, this process converged to a residual of< 0.5% for each

histogram bin within 100,000 iterations. For the hardware rendering method, computation

time was less than two minutes for input particles with 10,000 polygons. When using

the winged edge mesh, this computation time can be reduced by more than 80%. Some

example statistics for simple particles are shown in Figure 4-3.

Before this data can be used in our stereological calculations, we must compute a scale

factor s to relate the size of particleP to the size of the particles seen in the input im-

age. Suppose the image exhibits profiles with maximum areaAimg. This is equal to the

maximum profile area ofP if scaled uniformly by

s=
√

Aimg/APmax. (4.3)

This scale factor is used to calculate the mean caliper diameterH̄ = sH̄P, which is used in

Equation 4.2.

Finally, if we compute the profile densitiesNA from the input image, we can solve for

the particle densitiesNV as before:
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NV =
1
H̄

K−1NA (4.4)

4.3 Managing Multiple Particle Types

In many instances, a volume may exhibit more than one type of particle. In this case, each

particle shapei will have its own mean caliper diameter̄Hi , representative matrixKi , and

distributionNVi:

NA = ∑
i

(
H̄iKiNVi

)
If we assume that each particle type exhibits the same proportionate distribution—i.e.,

particle type and size distribution are uncorrelated—then this can be reexpressed as follows:

NA = ∑
i

(
H̄iKiP(i)NV

)
= ∑

i

(
H̄iKiP(i)

)
NV

whereNV = ∑NVi is the total particle density, andP(i) is the probability that a particle is

of type i. This allows us to solve for the particle densitiesNV as

NV =
[
∑
i

(
H̄iKiP(i)

)]−1
NA

When working with physical input data, these expressions may occasionally yield noisy

histograms or negative values for some elements ofNV . A thorough analysis of these prob-

lems and other considerations when dealing with physical data are discussed in Chapter 5.

4.4 Summary

This chapter has described how a disciplined stereological algorithm can be used for recov-

ering particle densities in a 3D volume based only on 2D profile observations and one or
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more estimated particle shapes. This is done by establishing a relationship between the size

distribution of observed 2D profiles and related statistics of the embedded particles. This

process was first derived for distributions of spheres and then extended to apply to particles

of arbitrary shapes.

Statistics of an embedded particle shape are computed with a Monte Carlo method

that takes repeated slices through a geometric model at random orientations and offsets.

Considerations for disjoint profiles were discussed, and the resulting statistics for several

example particles were shown.

One of the assumptions of the algorithm described here is that particles exhibited in

the volume have uniformly distributed orientations. However, it should be noted that the

method can be easily adapted for any known distribution of particle orientations. For in-

stance, if a volume is populated with cylinders that are oriented perpendicular to the view-

ing plane, then theK-matrix can be computed accordingly. Cylinders under these con-

straints will always exhibit a constant profile size, soK will be zero everywhere except

along its diagonal. By extrapolating from these observations, it may be possible to apply

the density recovery algorithm to anisotropic materials.

In the following chapter, I consider sources of error in the texture synthesis pipeline,

focusing on the interdependence between particle shape estimation and the distribution

recovery process.
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Chapter 5

Anticipating Error

The problem of synthesizing solid textures from images of aggregate materials is highly

unconstrained. In order to obtain a solution, I rely on a number of assumptions, each

of which may introduce error into the computation. In this chapter, I consider potential

sources of error and concerns in obtaining physically plausible results.

As described in Chapter 3, the algorithms that we consider for extrapolating 3D par-

ticle shapes from 2D profiles are psychophysically motivated. The objective is to obtain

particles whose profiles appear similar to those seen in an input image. However, there is

no guaranteed that the resulting 3D models are physically correct. Poorly estimated parti-

cle shapes should be expected to introduce a certain amount of error into the distribution

recovery algorithm. Additional errors may be introduced by quantization from histogram

binning, as well as a finite number of profile observations in an input image.

5.1 Synthetic Volumes

To test the robustness of the distribution recovery algorithm under a variety of input condi-

tions, I analyzed a number of different synthetic distributions. In each case, a synthetic vol-

ume was populated with spherical particles. Ten equally spaced slices were taken through

the volume, and the observed profiles were binned according to their diameter to popu-

late the profile density histogram,NA. I then solved for the particle densities,NV , using

Equation 4.1.
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Figure 5-1: Performance of the density recovery algorithm on a variety of input distribu-
tions. Each graph shows 3D particle densities grouped into ten histogram bins. Actual
distributions are shown in blue and estimated distributions in red.

Figure 5-1 shows the results of the algorithm applied to single-mode, bimodal, lognor-

mal, and constant distributions. The actual particle distributions are shown in blue with

the estimated distributions in red. These results were based on between 1050 and 1400

profile observations, grouped into ten evenly sized histogram bins. Figure 5-2 illustrates a

side-by-side comparison of a small subregion of the single-mode volume and a comparable

region in a volume generated with the recovered density values.

All of the distributions are estimated with sufficient precision to obtain materials with

a comparable appearance to the input. It should be noted that the distribution recovery

algorithm obtains the most precise results when applied to a material with a lognormal

particle distribution. This is noteworthy because lognormal distributions are commonly

observed in both man-made and natural materials, as will be discussed in greater detail in
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(a) (b)

Figure 5-2: Comparison of the single-mode volume of spherical particles (a) and a compa-
rable volume obtained via the density recovery algorithm (b).

Section 5.4.2.

5.2 Working with Physical Data

For the synthetic volumes described above, we benefit from being able to obtain an exact

profile count, from having a large number of profile observations, and from knowing the

exact particle shapesa priori—all of which make the calculations more statistically robust.

In contrast, when working with physical data, we are often unable to count small profiles,

we may be limited to fewer profile observations, and we must rely on particle shape ap-

proximations. Each of these introduces potential sources of error into our calculations.

Errors in the volume density recovery process are typically manifested as either dra-

matically different densities in adjacent histogram bins or negative estimates for particle

densitiesNV . If only a few profiles have been observed in one or more of the profile his-

togram bins,NA, then numerical errors should be expected. This problem can be reduced

simply by decreasing the number of histogram bins that are used for the calculations, which

allows for greater statistical precision within each bin.

Negative estimates in the recovered volume histogram are particularly likely for the

bins representing the smallest particles. It should be expected that small profiles may be

obscured by noise or may be removed completely from the volume by the sample prepa-

ration process. These underrepresented profiles may, in turn, result in negative estimates
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for small particle densities. Prior publications have addressed the phenomenon of under-

represented particle and profile observations in physical data, sometimes referred to as the

problem ofmissing fines[Keiding and Jensen 1972; Maerz 1996]. It should not necessarily

be considered an undisciplined approach to clamp negative estimates for particle densities

to zero based on the assumption that the errors were introduced by underrepresented profile

observations.

5.3 Accounting for Image Boundaries

When observing images of physical data, special care should be taken when counting pro-

files near the image boundary. To obtain statistically accurate results, a border should be

established along the image boundaries that is equal to at least half the width of the bound-

ing box of the largest visible profile. If the center of a profile lies outside of the boundary,

then that profile should not contribute to the density histogram,NA.

5.4 Interdependence of Particle Shape and Distribution

When dealing with physical volumes, the distribution recovery algorithm depends in part on

the 3D geometry recovered by the shape estimation process. Considering this dependency,

it would be useful to know the conditions under which an approximated particle shape can

be used as a substitute for an actual particle shape.

In the following analysis, I first consider the restrictive condition in which a volume

populated with particles of typePin can always be approximated using an estimated particle

shape of typePest in such a manner that both volumes exhibit identical profile distributions,

NA. I then discuss how this is applicable for observed real-world distributions.

5.4.1 Guaranteed Particle Equivalence

As was shown in equation 4.2, if a particlePin with a known shape is embedded in a volume

with known distributionNVin, then it will exhibit a profile distributionNA such that
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NA = H̄inKinNVin (5.1)

whereH̄in is the mean caliper diameter andKin is the representative matrix ofPin.

If we instead assume that the particles have an estimated shapePest, then we know from

Equation 4.4 that we can solve for the particle distributionNVest based on the observed

profile distributionNA.

NVest=
1

H̄est
K−1

estNA (5.2)

Our objective is obtain a particle distributionNVest that matches the observed profile

distribution given in Equation 5.1. This can be done by substituting Equation 5.1 into

Equation 5.2 as follows:

NVest=
1

H̄est
K−1

estH̄inKinNVin

This expression yields a physically plausible solution when all the entries inNVest are non-

negative. Under further consideration, we see that a solution can be guaranteed only when

the matrix productK−1
estKin has all nonnegative entries.

To test guaranteed equivalence between simple particle shapes, I evaluated this matrix

product for each combination of sphere, cube, elongated ellipsoid, and flattened ellipsoid

with matrices of size 5×5. In all instances where we assume that the volume is populated

with spherical particles—i.e.,Pest is a sphere—this matrix product contains all nonnegative

entries. In other words, for all of the considered particles, regardless of the actual distribu-

tion NVin, we are able to assume the that the shape is spherical and still obtain a physically

plausible solution forNVest. However, of the four particle shapes that I considered, no

two other particles exhibit this type of equivalency. Furthermore, when each of the ap-

proximated shapes shown in Figure 3-11 were considered as replacements for the original

shape, none demonstrated guaranteed equivalency. In short, we find that guaranteed shape

equivalency under arbitrary particle distributions is rare.

To understand why a sphere is a good substitute for other particle shapes, it helps to

consider the physical interpretation of what takes place when solving Equation 4.2 forNV
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using back-substitution. The expanded matrix form of this equation appears as follows.



NA1

NA2
...

NAn−1

NAn


= H̄



K11 K12 · · · K1,n−1 K1,n

0 K22 · · · K2,n−1 K2,n
...

...
...

...
...

0 0 · · · Kn−1,n−1 Kn−1,n

0 0 · · · 0 Kn,n





NV1

NV2
...

NVn−1

NVn


In the first step, we solve for the density of the largest particles, giving us an expression

that guarantees a positive result.

NVn =
1

H̄Knn
NAn

Having recovered a density estimate,NVn, we can anticipate that these particles will

also contribute profiles of smaller sizes. Specifically, for profiles of sizeNAn−1, we expect

the particles of the largest size to contribute a density ofH̄Kn−1,nNVn. This value is included

in the second step in the back-substitution process:

NVn−1 =
1

H̄Kn−1,n−1
(NAn−1− H̄Kn−1,nNVn)

As long as the number of observed profilesNAn−1 is greater than or equal to the number

of anticipated profilesH̄Kn−1,nNVn, then the expression evaluates to a positive result and

the solution continues to be physically plausible. However, if the difference of the values

is negative, then the expression results in a negative density. The same logic can be applied

to the remaining steps necessary to obtain a complete solution for the particle densitiesNV .

This analysis suggests that particles that exhibit primarily large profiles can reduce the

interdependence between steps in the back-substitution process. Thus, this type of particle

tends to be a more likely candidate for guaranteed equivalence. This explains why when a

volume is populated with cubes or ellipsoids, we are guaranteed to be able to match the 2D

profile statistics using spherical particles. As can be seen from Figure 4-3, the majority of

the profiles exhibited by a sphere are clustered into the histogram bin of the largest size.
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5.4.2 Physical Plausibility in Real-World Distributions

Thankfully, guaranteed particle equivalence is not necessary to solve for physically plau-

sible distributions for most real-world examples. To demonstrate this, we again consider

the physical interpretation of obtaining a solution for the particle densities using back-

substitution. As described in the previous section, when performing the second step in the

process, we hope to obtain a positive value for the following expression:

NAn−1− H̄Kn−1,nNVn

When we considered the problem from the perspective of the particle shape, we sought a

small value forKn−1,n. Alternatively, we can obtain a positive result with a sufficiently large

profile densityNAn−1. For each additional step in the back-substitution process, physical

plausibility is improved by having increasingly large profile densities.

The good news is that this relationship is exhibited by lognormal particle distributions,

which are by far the most common in both natural and man-made materials [DeHoff 1965].

To test robustness on real-world data, I considered four input profile distributions based

on photographs of real-world materials. For each example, I approximated a particle shape

using each of the methods described in Chapter 3 and then estimated the particle densities

using the algorithm outlined in Chapter 4. The resulting particle distributionsNV are shown

in Figure 5-3

Only two of the sixteen histograms resulted in negative values—concrete with the par-

ticle shape approximated with the generalized cylinder method and terrazzo 16 with the

shape derived from the CSG algorithm. In neither case do the negative values exceed−0.2.

As discussed previously, these negative densities may be attributed to the problem of miss-

ing fines, and should not be particularly concerning.

Ultimately, the calculated particle distribution is of little concern as long as it is physi-

cally achievable. As with the shape approximation algorithms, we can consider the distri-

bution recovery process to be psychophysically motivated. Rather than being interested in

the 3D particle distribution, we are primarily concerned with the appearance of the distri-

bution as seen in 2D slices through the solid texture.
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5.5 Summary

In this chapter, I have discussed the interdependence of particle shape and distribution and

addressed sources of error in the distribution recovery algorithm. Potential sources of error

include poor shape estimation, histogram quantization, and a limited number of profile

observations.

In general, it is unlikely that an approximated particle shape can be guaranteed as a

suitable proxy for another particle with an arbitrary distribution. However, for the lognor-

mal distributions that are seen in most real-world materials, this problem of guaranteed

equivalence is typically not a concern.

From a practical standpoint, we can consider the algorithms for recovering shape and

particle density to operate independently. Even if the geometric model obtained by the

shape extrapolation process is not physically accurate, the distribution recovery process

can insure that the observed 2D profile statistics match those observed in an example im-

age. We benefit from having option of having multiple shape approximation algorithms

at our disposal. If the density recovery algorithm yields negative estimates for particle

densities, then it is possible that the problem may by alleviated simply by considering a

different particle shape. ‘ Between the particle shape and particle density, we now have

enough information to construct a synthetic volume with the same parameters as an input

example. This process, including techniques for incorporating color and residual noise,

will be described in the following chapter.
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Figure 5-3: Estimated particle densitiesNV for several real-world materials. Particle shapes
were estimated using each of the four proposed algorithms. Negative density estimates are
shown in red.
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Chapter 6

Reconstructing the Volume

The preceding chapters introduced techniques for estimating particle shape and distribution

based on observations of a 2D image. Once these parameters are known, a synthetic vol-

ume can be constructed to match the appearance of the input. The reconstruction process

establishes particle positions and colors, as well as a residual noise function to add fine

details characteristic of the input.

6.1 Annealing

The synthetic volume is populated according to the density distributionNV such that the

largest particleP in the aggregate is scaled uniformly bys from Equation 4.3. The naive

approach for populating a volume is to add one particle at a time, randomly testing orien-

tations and translations until sufficient vacant space is found. This approach is historically

referred to in the texture community asbombing[Peachey 1985]. Unfortunately, texture

bombing methods fill space inefficiently and work only for loosely packed volumes.

For all of the example volumes shown in this thesis, I populate the volume with all of

the particles, ignoring overlap, and then perform simulated annealing to resolve collisions.

This method repeatedly searches for all interpenetrating particles and then relaxes particle

positions to reduce the number of intersections.

Both the bombing algorithm and the annealing process consider the volume to repeat

in thex, y, andz directions so that the resulting volume can tile seamlessly in space. If the
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annealing process pushes the center of a particle outside of the volume in one direction,

then that particle is moved to the opposite side of the volume; thus, the global density of

the particles cannot be altered. In practice, visual repetition is only noticeable in rendered

images if the texture volume is exactly aligned with a large planar face. This can be avoided

with a simple rotation of the solid texture.

Simulated annealing is a computationally expensive process, as it requires repeated

searching for all interparticle collisions. The relaxation process described here is the most

time-consuming part of the texture synthesis pipeline. In order to improve the efficiency, I

apply a number of optimizations:

• Only vertex-particle collisions are considered. Although this approach may fail to

capture certain types of collisions, it performs well if the vertex density is suffi-

ciently high and the geometry exhibits few sharply pointed features. Since simulated

annealing is an iterative process, it is acceptable to ignore some collisions during a

finite period of time, as long as the system converges to a solution.

• All particles are hashed into a 3D grid to reduce the number of collisions that must be

checked at each time step. This allows queries to be limited to the immediate vicinity

of any given particle.

• Point-in-particle queries are performed by transforming the point into the local coor-

dinate system of the particle and casting a ray in the positivex-direction. The point

falls inside the particle if and only if the ray encounters an odd number of polygon

intersections. This procedure is accelerated by projecting the particle mesh onto the

planex= 0 and hashing the flattened polygons into a 2D grid. This limits the number

of polygons that must be considered for intersection when the ray is cast.

• Many of the particles used within this thesis are composed of more than 10,000

polygonal faces. Collision detection can be greatly accelerated by using simplified

proxy models with a few hundred faces that fully enclose the original mesh.

To guarantee a minimum spacing between adjacent particles, the annealing process can

be performed with inflated proxy particles, which serve as an approximation of the original
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Figure 6-1: Slightly different appearances can be obtained with different annealing meth-
ods. This table compares the results obtained with bombing and annealing, without and
with a guaranteed particle spacing.

shape. Figure 6-1 shows a comparison of the bombing and annealing methods, without

and with a guaranteed particle spacing. When selecting an annealing method to replicate a

volume, the user should consider the density and appearance of the input sample, as well

as the stochastic process that created the physical material.

6.2 Color

If particle size and color are uncorrelated, then each particle can be assigned the mean color

of a randomly chosen profile from the input image. Similarly, the binding material can be

assigned the mean color of all non-profile pixels in the input image. An example of an
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(a) (b)

Figure 6-2: A cube of synthesized material, colored using mean profile colors (a) and by
adding a 3D noise function (b).

annealed and colored synthetic volume is shown in Figure 6-2(a).

If particles of different sizes exhibit different colors, then distinguishable color cate-

gories can be automatically identified by applying the k-means clustering algorithm to the

set of mean profile colors [Weisstein 2003]. The distribution recovery process can then be

applied to the profiles in each color group, and the combined results can be used to populate

a synthetic volume.

6.3 Adding Fine Details

As can be seen in Figure 6-2(a), assigning mean profile colors to individual particles yields

unsatisfying result as it fails to capture color variations at a sub-particle scale. This high-

frequency information can result from small-scale variation within the materials, or may be

superficial noise introduced by the sample preparation and imaging processes.

To more effectively replicate the input appearance, we start by subtracting the mean

color values of each profile—Figure 6-3(b)—from the original input image (a) to obtain

a residual image (c). Residual values for each pixel can range from -1 to 1 in each color

channel. The images shown here have been recentered around the color of the binding ma-

terial for clarity. The residual lacks the structure of the original input and responds well to

the application of Heeger and Bergen’s texture synthesis algorithm [1995] in three dimen-
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Figure 6-3: The mean color value for each profile (b) can be subtracted from the input
image (a) to yield a residual (c). Here, the residual has been recentered around the color of
the binding material for clarity. This residual lacks the macroscopic structure of the input
and can be resynthesized as a 3D volume [Heeger and Bergen 1995] (d). This can then be
added back to the mean values (e) or used in a synthetic volume (f ).

sions (d). When the synthesized noise values are added on top of the mean color values,

the resulting appearance is similar to that of the input image (e). This newly synthesized

residual texture volume can also be added to the mean color values in a synthetic volume

to yield an image that exhibits both the structure and characteristic noise frequencies of the

input (f ). For comparison, a synthetic volume is shown with and without the residual noise

in Figure 6-2.

The residual volume should be synthesized to match the pixel scale of the input image.

Like the particle volume, the residual volume can be synthesized to allow for seamless

repetition in thex, y, andz directions. Thus, the dimensions of the residual volume do not

need to match the dimensions of the particle volume.

Attempts to estimate noise distributions for individual particles were largely unsuc-
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cessful due to the insufficient sample size of the input profiles. Furthermore, I found that

applying different noise functions to individual synthetic particles resulted in sharper visi-

ble boundaries than appear in the input images. This should be expected if the majority of

the high-frequency information in an input image is a product of sample preparation and

image noise rather than variation within discrete particles.

6.4 Texture Representation

After a synthetic volume is annealed, it can be stored in a relatively compact data format.

Each unique particle shape that is used within the volume is stored as a watertight polygon

mesh. In all of the images shown in the following chapter, no more than two distinct particle

shapes are used for any given example.

An annealed volume may exhibit more than ten thousand individual particles, but each

discrete particle needs only a translation vector, an isotropic scale factor, a rotation quater-

nion, a color, and a single byte to indicate the corresponding polygon mesh. The transfor-

mation values are stored as four-byte floating-point numbers and the color as a triplet of

bytes, yielding a total memory requirement of only 36 bytes per particle. An additional

three bytes store the color of the binding material.

Only the 3D residual data requires significant storage memory. The synthesized noise

values are stored in a voxel cube of RGB triplets. For all of the images in the following

chapter, the matrix is 128 units in each dimension, requiring a total of 6Mb of storage.

6.5 Rendering

When viewing a synthetic scene, the rendering function needs to determine if a point within

the scene is inside of any particle and where that point should be indexed into the noise

volume. The point-in-particle query is identical to that used for the simulated annealing

process, so several of the same optimizations are applied. Particles are hashed into a spatial

grid so that only the particles in the immediate vicinity of the point need to be considered.

Furthermore, the polygons that define the particle geometry are projected onto a planar
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(a) (b) (c)

Figure 6-4: If an input texture has soft particle boundaries (a), then the hard edges of the
synthetic result (b) can be softened by blending between colors near the particle surface
(c).

surface and hashed into a 2D grid to accelerate ray-polygon intersection as described in

Section 6.1.

When indexing into the noise volume, a simple modulo function enables seamless tiling

in three dimensions. Between discrete samples, trilinear color interpolation is used to guar-

antee smoothness.

In some cases, an input image may exhibit smooth boundaries between particles and the

surrounding medium, as shown in Figure 6-4(a). If these boundaries appear too sharp in

the synthetic counterpart (b), then the lines can be softened by smoothly blending between

the color of the particle and the binding material. In Figure 6-4(c), I demonstrate a linear

blend between the colors as a function of distance from the surface of the particle mesh.

Special care should be taken to make sure that the blending function does not change the

apparent size of the particles.

6.6 Summary

This chapter has described strategies for populating a 3D volume of particles, including op-

timizations for accelerating the synthetic annealing process needed to create a solid texture.

Also included are methods for incorporating color and noise information into the texture

volume.
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Colors are randomly selected for each particle from the list of mean profile colors that

appear in the input image. A 3D array of residual noise values is created by applying

the texture synthesis algorithm introduced by Heeger and Bergen, which performs well on

stochastic inputs.

With the exception of the noise function, the data representation is relatively compact,

requiring only one triangle mesh for each particle type, plus 36 bytes per particle. The

noise function, however, requires 6Mb of storage for a voxel array with dimensions 1283.

To reduce this memory requirement, future research may consider the use of Perlin noise

as an alternative representation for the residual function. Furthermore, future research may

consider the size threshold at which repetitive artifacts become visually apparent.

As described in Chapter 4, if a volume of anisotropic particles exhibits known, nonuni-

form orientations, then the distribution recovery algorithm can be adapted to collect ap-

propriate particle statistics. Similarly, if a new volume is then created from the particles,

special care must be taken in the simulated annealing process to insure that the orientation

constraints are respected. The simplest way to do this is to populate the volume according

according to the known constraints and then modify the annealing process to affect only

the particle positions—not their orientation.

We now have all of the methods necessary for extrapolating the individual parameters of

an aggregate material—particle shape, particle distribution, color, and residual noise. The

following two chapters will demonstrate the application of these techniques on physical

inputs and will consider additional advantages of the data representation described here.
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Chapter 7

Results

To test the solid texture synthesis pipeline on real-world data, I applied the algorithm to

a physical model with known parameters and several physical datasets with unknown pa-

rameters. These results and corresponding analysis are discussed in the remainder of this

chapter.

7.1 Test Volume

In order to test the algorithm on physical data under controlled conditions, I constructed

a volume with known particle shape and distribution. Part of the volume was sliced into

planar regions, as shown in Figure 7-1(a), and the profiles were counted to estimate the

profile density distribution. The remainder of the volume was carved into an abstract shape

and scanned with a 3D turntable scanner. Finally, a synthetic volume was rendered using

the density values recovered by the stereological analysis process. Figure 7-1 shows a side-

by-side comparison of the actual volume (b) and the synthetic rendition (c). Also shown

for comparison are the synthetic volume rendered with mean color values only (d), and a

synthetic volume textured by applying Heeger and Bergen’s algorithm [1995] to the initial

input texture (e). This final image effectively captures much of the color and frequency

information, but fails to capture the discrete structure of the input.

95
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(a) (b)

Figure 7-1: To test the algorithm under controlled conditions, I constructed and measured
a volume with known particle shape and distribution (a). An abstract shape carved from
the physical volume (b), is synthetically replicated using the color, noise, and distribution
parameters recovered by our algorithm (c). For comparison, I also show the synthetic
volume with mean color values only (d) and a synthetic replica of the volume rendered
using Heeger and Bergen’s algorithm [1995] (e).
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7.2 Physical Inputs

To test the shape and density recovery algorithm with physical inputs, I applied the methods

to four different segmented textures, portions of which are shown in the left column of

Figure 7-2. A single particle shape was extrapolated for each texture example using the

morphed generalized cylinder method introduced in Chapter 3. I then estimated volume

histograms using five equally sized bins as described in Chapter 4. These values were

estimated based on between 650 and 2400 distinct profile observations. Finally, synthetic

volumes were populated with the recovered particle density values, and the volumes were

annealed as described in Chapter 6.

All of the density histograms shown in Figure 7-2 appear to approximate lognormal

distributions. This result is expected, as lognormal particle distributions are known to be

common in both natural and man-made materials [DeHoff 1965].

Figure 7-3 shows a series of textures derived from images of real-world materials. In

each image pair, the input texture is shown on the left and the corresponding synthetic

result on the right. In each case, the residual volume is synthesized at a resolution of

128×128×128 voxels in less than three minutes.

The image pair in the lower-right corner of Figure 7-3 demonstrates some of the limits

of the algorithm. In this case, individual profiles in the input image exhibit secondary

structure in the form of lines, cracks, and color gradients. The residual function fails to

capture this structure, which is absent in the synthesized image.

Special attention should be given to the image pair shown in Figure 7-4. For this ex-

ample, the texture input is an image of a bath sponge that is composed of discrete mate-

rial voids rather than a collection of particles. To obtain the results shown on the right,

I analyzed the visible material voids and performed shape approximation and distribution

recovery exactly as was done for the examples in Figure 7-3. I then used constructive solid

geometry to subtract the particle voids from the face of a cube and rendered the resulting

geometry. This highlights one of the benefits of having an explicit geometric representation

of the discrete elements within a volume.

Figures 7-5 provides another example of the advantages of having an explicit represen-
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Figure 7-2: The textures shown at the far left and the extrapolated particle shapes shown
in the second column are used as inputs to the particle density recovery algorithm. The
resulting particle density histograms and example slices through the synthetic volumes are
shown on the right.

tation of the volumetric elements of a texture. In this case, the concrete box was split with a

simple plane while respecting the particle shape boundaries. Particles that crossed the split

plane were assigned to one side or the other according to their center of mass. The result

is a compelling image of a concrete block that effectively conveys the texture, scale, and

internal structure of the material.

The most time-consuming part of the texture recovery process is the volume annealing,

which can require anywhere from a few seconds to half an hour, depending on the particle

density, size, and complexity. As described in Chapter 6, this process is accelerated by
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Figure 7-3: In each image pair, physical inputs to the solid texture algorithm are shown on
the left and synthetic results are shown on the right.
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Figure 7-4: The image of the bath sponge shown on the left was reproduced on the right by
applying the texture synthesis algorithm to the material voids visible in the input. The 3D
model on the right was created by using constructive solid geometry to subtract the material
voids from a planar surface.

applying a number of optimizations.

Figures 7-5, 7-6, and 7-7 show synthetic scenes rendered using textures recovered by

the methods proposed in this thesis. All of the textures are derived from the input images

shown in Figure 7-3.

7.3 Summary

This chapter demonstrated the application of the complete synthesis pipeline for extrapo-

lating solid textures from physical 2D samples. The methods were validated by a direct

comparison of a physical model and a digital replica with its appearance derived from the

application of these techniques.

Several examples were shown of solid textures derived from photographs of aggregate

materials. The synthetic volumes recovered using this approach were used to texture the

geometry of three example scenes. The examples of the sponge texture and the concrete

block demonstrate the value of having an explicit representation for the internal structure

of a solid material.

In the following chapter, I discuss the implications of the methods introduced in this

thesis and consider directions for future research.
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Figure 7-5: A synthetic image of a concrete box is created by splitting the geometry with a
simple plane while respecting particle shape boundaries. This demonstrates an advantage
of having an explicit spatial texture representation
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Figure 7-6: A synthetic image of a cat sculpture, rendered with solid textures extrapolated
from real-world data.
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Figure 7-7: A synthetic image of a stone chess board, rendered with solid textures extrap-
olated from real-world data.
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Chapter 8

Conclusions and Future Work

The methods described in this thesis expand the class of 3D solid textures that can be

synthesized from 2D photographs. More specifically, I introduce methods that operate on

textures with discrete macroscopic structure. Many of these techniques draw from existing

classes of literature that offer a number of mathematically rigorous synthesis tools as new

additions to the computer graphics toolbox.

The class of textures considered here offers unique challenges to existing texture syn-

thesis algorithms, as aggregate materials exhibit a mix of stochastic and structured char-

acteristics. By considering each texture parameter in the most appropriate domain, the

methods introduced here are able to successfully synthesize compelling 3D materials that

closely match the appearance of an input image.

8.1 Particle Shape Estimation

As demonstrated in Chapter 3, the morphed generalized cylinder algorithm introduced in

this thesis outperforms all of the other considered methods from a psychophysical per-

spective. The other three methods—spherical harmonics, constructive solid geometry, and

generalized cylinders—each perform well within certain domains, but are not well suited

for a wide variety of input appearances.

For each of the considered shape estimation algorithms, the output shape relies on user

selection of appropriate input profiles. Future research may consider automating this selec-
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tion process to choose optimal 2D profiles that appropriately represent the general texture

appearance. This task is particularly challenging when a wide variety of profile shapes are

visible in the input image, suggesting that more than one particle shape may be needed to

characterize the dataset.

For some of the shape estimation algorithms, different permutations of the input profiles

may yield different particle shapes. For instance, for the generalized cylinder and morphed

generalized cylinder methods, selecting a different profile as for the base curve,b, can

affect the output. Future research may further consider these dependencies and propose

alternate heuristics to optimize the 3D shape constraints.

8.2 Predicting Psychophysical Shape Similarity

The user study described in Chapter 3 ranks the performance of the shape extrapolation al-

gorithms based on the similarity of profile shapes. The study resulted in a decisive ordering

of the algorithms, ranking morphed generalized cylinders as the most effective, followed

by generalized cylinders, constructive solid geometry, and spherical harmonics.

Two automated metrics—total curvature magnitude and area per perimeter squared—

were marginally successful at predicting perceived shape similarity. Each of the two met-

rics ranked the performance of morphed generalized cylinders and generalized cylinders

above that of CSG and spherical harmonics. However, there was no consensus on a total

ordering.

The use of automated techniques for predicting psychophysical response is challenging

because of the inherent complexity and limited knowledge of human perceptual mecha-

nisms. Even modest contributions in this area can be of great assistance to perceptually-

driven research, as it is infeasible to always seek direct user evaluation in the form of a

thorough, bias-free user study. Future research should consider the use of alternative auto-

mated metrics for assessing shape similarity.

To be most applicable within the domain of texture appearance, the user study and

automated metrics discussed in Chapter 3 measure shape similarity in two dimensions. If

the resulting particles are to be viewed directly, as shown in Figure 7-5, then different
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attributes should be used as a basis for comparison. For instance, for replicating a desired

2D appearance, spherical harmonics tend to perform poorly; however, as shown in Figure 3-

11, the 3D shape produced by the spherical harmonics method is arguably the most similar

to the complex input shape.

8.3 Particle Distribution Recovery

In Chapter 4, I demonstrated a distribution recovery algorithm that can be applied to arbi-

trarily shaped particles and can be adapted for more than one particle shape. One advantage

this process is that it has more mathematically rigorous foundations than a number of prior

publications in the area of textures synthesis. The statistical approach provides a sound

basis for synthesizing material distributions with well-defined assumptions to perform ac-

curate predictive rendering.

8.4 Sources of Error

Due to the unconstrained nature of the solid texture synthesis algorithm, the methods de-

scribed in this thesis rely heavily on assumptions to obtain plausible solutions. Errors may

be introduced by poor shape estimation, quantization from histogram binning, and limited

profile observations.

When approximating a distribution of spherical particles, I show in Chapter 5 that the

estimation algorithm yields reliable results under a variety of input conditions. If the pre-

cise particle shapes are not knowna priori, as is the case with most real-world materials,

then we expect that an estimated particle shape is not exactly physically correct. For the

purpose of matching 2D profile statistics, I demonstrate that it is difficult to guarantee

that a proxy shape can be substituted for another particle with an arbitrary volumetric dis-

tribution. However, for real-world materials—which typically exhibit lognormal particle

distributions—the estimation algorithm is robust to errors in the particle shape.

Ultimately, errors in the particle shape and distribution are of little concern, as we are

not necessarily interested in recovering a physically accurate volume. Instead, the objective
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is to obtain a volume that exhibits a desired appearance through a 2D slice. As long as the

estimated particle distribution is nonnegative, we may consider the solution to be sufficient

from a perceptual standpoint.

8.5 Volume Reconstruction

The most time-consuming part of the texture synthesis pipeline proposed here is the simu-

lated annealing process required for reconstruction of the particle volume. As implemented

for this thesis, interparticle collision detection is accelerated with a number of optimization

techniques, as described in Section 6.1. The annealing process maintains global particle

density and yields a volume that can be seamlessly tiled in space.

The volume reconstruction process includes mechanisms for accurately characterizing

both the color and high-frequency noise of an input image. Because the volume has infinite

spatial extent, it can be mapped onto the surface of arbitrary geometry without the need for

an explicit, surface-specific parameterization.

8.6 Applications

The algorithms described here are well suited for use in architectural rendering, in which

faithful reproduction of appearance is important for conveying material properties. The

realism of the textures also makes them suitable for use in movies, where digital scenes

may be mixed with live action.

By matching input samples from existing structures or sculptures, this technology may

also prove useful for historic restoration. In several well-known examples such as the Venus

de Milo, the Great Sphinx of Giza, and the Parthenon, large amounts of material have been

removed from the original structures. By replicating a sample material appearance, visually

accurate digital models of restored structures might be produced.

In order to use the solid textures in real-time application, the textures can be projected

onto the surface of a model at a desired resolution [Cutler 2003]. This precomputation

step enables the use of the solid textures in applications such as games or architectural
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walk-throughs.

In contrast to voxel-based representations for texture data, the material description used

here explicitly maintains the geometry of the individual particle shapes. This representa-

tion requires less memory than a voxel-based approach while allowing for sharp particle

boundaries suitable for high-fidelity image rendering. Furthermore, this explicit particle

representation is amenable to physical simulation.

Two examples that take advantage of this explicit structure are shown in Figures 7-4

and 7-5. In these images, the particle geometry is incorporated into the scene geometry.

These models were created with simple CSG operations, yet the concrete box in particular

conveys the complexity of physical simulation.

Another advantage of the data representation is that parameters for particle shape, dis-

tribution, color, and noise are each recovered independently. By mixing and matching

recovered parameters from a variety of input sources, novel materials can be synthesized in

an intuitive way. For instance, an artist might create a hybrid material by choosing particle

shapes from one image, particle distribution from another image, and color and noise data

from two additional sources. This approach to texture authoring is shown in Figure 8-1,

which demonstrates the power of an example-based framework.

8.7 Limitations

The texture synthesis algorithm proposed here has been shown to be effective for replicating

a number of example textures. However, in some cases, discrete particles may exhibit

secondary structure, which is typically not captured by the residual volume. In future

work, additional parameters may be considered to capture this variation in appearance.

One limitation of this research is that it assumes input images to have an isotropic ap-

pearance. Without this assumption, it is unclear from a single image how anisotropic struc-

ture should be characterized in a 3D volume. Future research may consider the appearance

of a material as seen in orthogonal volumetric slices in order to extend these techniques to

be applicable to a greater variety of input textures. In some simple examples, a matrix may

be computed to reproject anisotropic textures into an isotropic domain where the texture
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Figure 8-1: A novel texture is produced by mixing texture parameters recovered from four
different input images.

synthesis algorithms can be applied as usual.

8.8 Future Work

Just as this thesis builds on a large collection of related research, there is ample opportunity

to extend the contributions introduced here into other domains. In this section, I present

opportunities for future work, not only in the area of solid texture synthesis, but also in a

variety of related disciplines.

8.8.1 Geometry Compression

Within this research, I framed the shape recovery process to operate in the context of texture

synthesis, but the algorithms described in Chapter 3 may also be applied to other problems

within computer vision and computer graphics. Since profiles offer a compact represen-

tation of shape, some of these algorithms may be considered for geometry compression.

In particular, the morphed generalized cylinder can be adapted to use any number of input

curves to define shape constraints around the axis of rotation. This suggests that an exist-
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ing geometric model may be compressed by adding wireframe constraints until a desired

accuracy is obtained.

8.8.2 Geometric Modeling

The generalized cylinder has a long history of use in the computer vision community for

its ability to express a wide array of shapes with very compact parameters. Likewise, the

morphed generalized cylinder allows for even greater flexibility in a geometric represen-

tation with intuitive 2D constraints. This suggests that the representation may be used as

a general modeling tool for authoring 3D geometry from simple, limited user input. Due

to the simplicity of the construction algorithm, changes made to a control curve can be

immediately reflected in a 3D model.

As described in Chapter 3, the interpolation scheme used by the morphed generalized

cylinder algorithm is based on normalized arc length. This approach works reasonably

well for simple particle shapes, but it should be expected that this simple heuristic will

yield poor results if the shape constraints are sufficiently complicated. Future research may

consider different ways of enforcing smoothness between morph curve constraints if more

complicated geometric models are desired.

8.8.3 Metrics for Predicting Shape Similarity

Chapter 3 considered the use of two automated metrics for predicting the psychophysical

evaluation of shape similarity. These metrics were only moderately successful in anticipat-

ing the results of the user study. Future research may consider the use of other perceptually-

motivated metrics that measure symmetry, presence of sharp corners, or other 2D shape

features.

In particular, I believe it would be useful to derive a metric that computes the distri-

bution of curvature along the edges of a 2D polygon. Such a metric could indicate the

presence of sharp corners, as well as smooth lines along the boundary of a 2D shape. In

practice, I have had difficult in deriving such a metric, as the methods that I have considered

are sensitive to polygon tessellation and coincident or near-coincident vertices.
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The user study described in Chapter 3 deliberately eliminates variability in the particle

size distribution in order to focus attention on particle shape. However, it should be ac-

knowledge that size distribution may play a role in shape perception. Future research may

incorporate this variable into a psychophysical evaluation of shape similarity.

8.8.4 Image Segmentation

One additional remaining challenge in the image processing pipeline is that of robust, fully-

automated image segmentation. For most of the examples shown in this thesis, I was able

to segment input textures by using simple color filtering. However, the segmented textures

often required some degree of manual clean-up, particularly for separating closely-spaced

particles that may appear conjoined in the segmented image. Image segmentation is a long-

standing problem within the computer vision community, and this research will benefit

from future contributions in this area.

8.8.5 Residual Volume Compression

With the exception of the residual volume, the texture representation described here is

relatively compact. Other representations for the residual function may be considered, such

as an adaptation of Perlin noise [Perlin 1985; Perlin and Hoffert 1989]. If this component

of the texture can be represented more concisely, then the textures described here may be

considered for real-time rendering with pixel shaders on specialized graphics hardware.

8.8.6 Level of Detail

For the results shown in this thesis, most of the volumes exhibit either one or two particle

shapes with approximately 10,000 triangles. With these large triangle meshes, rendering

may be unnecessarily time-consuming when most of the geometric detail in the particles

cannot be discerned. Since the individual particles within the volume have an explicit

geometric representation, it is likely that existing level-of-detail algorithms can be adapted

to reduce their geometric complexity. If a particle appears sufficiently small in screen space,
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then it can be replaced by a proxy model without an appreciable impact on the rendered

scene.

8.8.7 Example-Based Texture Authoring

The example-based texture synthesis framework depicted in Figure 8-1 illustrates the ad-

vantage of independently recovering different material parameters. This type of interface

can allow even a novice user to author textures without having any explicit knowledge of

the underlying representation.

In this thesis, I considered methods for recovering four specific parameters for a partic-

ular category of materials. It would be useful to extend this approach to operate on input

images with a greater variety of appearances.

One of the challenges of procedural shaders is that they tend not to operate within a

perceptually uniform parameter space. In contrast, the representation shown here offers

possibilities to interpolate between parameters recovered from different textures. For in-

stance, a user may desire a particle distribution that falls somewhere between two given

texture examples. This may be obtained simply by interpolating the values in the density

histograms. Similarly, if a user desires a hybrid particle shape, then a method may be con-

sidered for incorporating profiles from two or more example images into a single geometric

model. In contrast to a typical procedural shader, this framework may allow for intuitive

texture authoring in a psychophysically-motivated parameter space.

8.9 Summary

This thesis offers a relatively mature, comprehensive system for synthesizing solid textures

of aggregate materials from example images. I have demonstrated the effectiveness of the

approach with a number of texture inputs, and have illustrated its use in rendering visually

compelling scenes.

In addition to the texture synthesis algorithm, this document incorporates a number of

contributions, including the morphed generalized cylinder representation, a psychophysical
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evaluation of shape extrapolation methods, and a baseline for using automated metrics to

predict perceptual similarity of 2D shapes.

Just as this thesis draws from prior contributions in a variety of different fields, hope-

fully this work will demonstrate its utility in areas of research that extend beyond computer

graphics, computer vision, human perception, and stereology.
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Appendix A

Consent Form for User Study
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CONSENT TO PARTICIPATE IN  
NON-BIOMEDICAL RESEARCH 

 
Relative performance of 3D shape reconstruction algorithms 

 
 
You are asked to participate in a research study conducted by Robert Jagnow, from the 
Department of Electrical Engineering and Computer Science at the Massachusetts 
Institute of Technology (M.I.T.), and Julie Dorsey, at the Department of Computer 
Science at Yale University.  The results of the study will contribute to the Ph.D. thesis of 
Robert Jagnow.  You were selected as a possible participant in this study because of your 
affiliation with the computer graphics community. You should read the information 
below, and ask questions about anything you do not understand, before deciding whether 
or not to participate. 
 
 
• PARTICIPATION AND WITHDRAWAL 
 
Your participation in this study is completely voluntary and you are free to choose 
whether to be in it or not. If you choose to be in this study, you may subsequently 
withdraw from it at any time without penalty or consequences of any kind.  The 
investigator may withdraw you from this research if circumstances arise which warrant 
doing so.   
 
 
• PURPOSE OF THE STUDY 
 
This study is designed to assess the relative performance of four different algorithms for 
approximating 3D shapes from 2D input.  This research is applicable to the field of 
texture synthesis, in which synthetic images are derived from input photographs that 
depict a desired appearance.  In this work, we start with four different three-dimensional 
particle shapes, each of which is then approximated using four different algorithms, 
resulting in a total of 16 different decoy models.  Users will be asked to compare the 
appearance of 2D slices through the resulting 3D particles in order to evaluate the 
effectiveness of each algorithm from a perceptual standpoint. 
 
 
• PROCEDURES 
 
If you volunteer to participate in this study, we would ask you to do the following things: 
 
You will be asked to perform approximately 80 different comparisons in a computer-
based test to evaluate image similarity.  On each screen, you will see three images in a 
row.  The center image will show a collection of black shapes on a white background.  Of 
the two adjacent images, you will click the image that is least similar to the image in the 



center.  More specifically, you should evaluate the similarity of the three images based on 
the shape of the black regions rather than on the size or density of the regions. 
 
To help you prepare for the study, you will be given an example test with only five to ten 
questions, which should take less than two minutes to complete.  The complete test 
should take less than 30 minutes to complete. 
 
All testing will take place in an office in MIT building 32. 
 
 
• POTENTIAL RISKS AND DISCOMFORTS 
 
Each participant in the study will be interacting with a mouse and clicking every five to 
twenty seconds over the course of a twenty- to thirty-minute session.  If you have a prior 
history of a work-related repetitive stress injury, you may want to reconsider your 
participation in the study. 
 
 
• POTENTIAL BENEFITS  
 
It is not expected that you will receive any direct, personal benefits as a result of your 
participation in this study. 
 
This research will be used to evaluate the relative performance of four different 
algorithms for the approximation of 3D shape from incomplete 2D information.  As such, 
the results of the study will help to contribute to the general knowledge of the computer 
graphics and human perception communities. 
 
 
• PAYMENT FOR PARTICIPATION 
 
No financial compensation will be offered in exchange for participation in this study. 
 
 
• CONFIDENTIALITY 
 
Any information that is obtained in connection with this study and that can be identified 
with you will remain confidential and will be disclosed only with your permission or as 
required by law.  
 
The only identifiable information that will be included in this study are the participant’s 
name and e-mail address.  This information will be stored electronically and will be 
accessible only to the researchers who are directly involved in administering the study.  
Data will be electronically archived following the study.  If other researchers use the data 
in future projects, personal identifiable information will be excluded. 
 



 
• IDENTIFICATION OF INVESTIGATORS 
 
If you have any questions or concerns about the research, please feel free to contact one 
of the following investigators: 
 
  Robert Jagnow, Principal Investigator 
  Daytime phone: 617-258-5090 
  E-mail address: rjagnow@graphics.csail.mit.edu 
 
  Julie Dorsey, Faculty Sponsor 
  Daytime phone: 203-432-4249 
  E-mail address: dorsey@cs.yale.edu 
 
 
• EMERGENCY CARE AND COMPENSATION FOR INJURY 
 
“In the unlikely event of physical injury resulting from participation in this research you 
may receive medical treatment from the M.I.T. Medical Department, including 
emergency treatment and follow-up care as needed. Your insurance carrier may be billed 
for the cost of such treatment. M.I.T. does not provide any other form of compensation 
for injury.  Moreover, in either providing or making such medical care available it does 
not imply the injury is the fault of the investigator. Further information may be obtained 
by calling the MIT Insurance and Legal Affairs Office at 1-617-253 2822.” 
 
 
• RIGHTS OF RESEARCH SUBJECTS 
 
You are not waiving any legal claims, rights or remedies because of your participation in 
this research study.  If you feel you have been treated unfairly, or you have questions 
regarding your rights as a research subject, you may contact the Chairman of the 
Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E32-335, 77 
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787. 
 
 



 
SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

 
I understand the procedures described above.  My questions have been answered to my 
satisfaction, and I agree to participate in this study.  I have been given a copy of this 
form. 
 
________________________________________ 
Name of Subject 
 
________________________________________ 
Name of Legal Representative (if applicable) 
 
________________________________________  ______________ 
Signature of Subject or Legal Representative   Date 
 
 
 

SIGNATURE OF INVESTIGATOR  
 
In my judgment the subject is voluntarily and knowingly giving informed consent and 
possesses the legal capacity to give informed consent to participate in this research study. 
 
 
________________________________________  ______________ 
Signature of Investigator     Date 
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